Что известно про витамины Д и К при БАР и подагре?

Я хотела посмотреть, что при биполярном расстройстве, с одной стороны, и при подагре, с другой, с уровнем витаминов Д и К. 

Что нашла:

 1. В маниакальной фазе у людей с биполярным расстройством концентрация витамина Д в плазме крови существенно ниже, чем у людей с биполярным расстройством в ремиссии и у здоровых. 

Altunsoy N, Yüksel RN, Cingi Yirun M, Kılıçarslan A, Aydemir Ç. Exploring the relationship between vitamin D and mania: correlations between serum vitamin D levels and disease activity. Nord J Psychiatry. 2018 Apr;72(3):221-225. doi: 10.1080/08039488.2018.1424238. Epub 2018 Jan 7. PMID: 29308715.

 2. У людей с дефицитом витамина Д уровень мочевой кислоты выше, чем у людей, у которых уровень витамина Д в рамках нормы. 

Charoenngam N, Ponvilawan B, Ungprasert P. Vitamin D insufficiency and deficiency are associated with a higher level of serum uric acid: A systematic review and meta-analysis. Mod Rheumatol. 2020 Mar;30(2):385-390. doi: 10.1080/14397595.2019.1575000. Epub 2019 Mar 4. PMID: 30689484.

 3. Концентрация паратиреоидного гормона (паратгормона) у людей с биполярным расстройством коррелирует со степенью тяжести заболевания. 

Это, в общем, неудивительно — паратгормон тут, возможно, выступает как способ компенсации того, что кальций из плазмы закачивается в клетки. Но только берет он кальций, чтобы повысить его концентрацию в плазме крови, из костей. 

Steardo L Jr, Luciano M, Sampogna G, Carbone EA, Caivano V, Di Cerbo A, Giallonardo V, Palummo C, Vece A, Del Vecchio V, De Fazio P, Fiorillo A. Clinical Severity and Calcium Metabolism in Patients with Bipolar Disorder. Brain Sci. 2020 Jul 1;10(7):417. doi: 10.3390/brainsci10070417. PMID: 32630307; PMCID: PMC7408522.

Про витамин К известно гораздо меньше, чем про витамин Д, он не такой “популярный”, хотя распространенность дефицита витамина К сопоставима с распространенностью дефицита витамина Д. 

Витаминов К вообще как минимум два разных, филлохинон (К1) и менахиноны (несколько веществ, объединяемых названием “витамин К2”). У них разные функции. Витамин К1 отвечает за свертываемость крови, а у витамина К2 много разных функций, в том числе он активирует вещества, противостоящие осаждению кальция там, где ему не положено осаждаться, например, в кровеносных сосудах и в почках (именно поэтому важно при приеме витамина Д сопровождать это приемом витамина К2). Есть исследования, что поддержание достаточного уровня витамина К уменьшает вероятность развития остеопороза. 

Позвоночные не способны вырабатывать витамины К в своем организме, поэтому им необходимо получать их с пищей. Витамин К1 производится при фотосинтезе, соответственно, чем более темно-зеленой является растительная пища, тем больше в ней витамина К1 (кроме овощей, он еще в водорослях типа нори и вакаме содержится, а также в чае маття). Тут имеет смысл помнить, что многие из нас сейчас неспроста пьют антикоагулянты, поэтому лучше не перебарщивать с пищей, содержащей в высокой концентрации витамин К1. 

Витамин К2 производится преимущественно бактериями, но в некоторых тканях животных он образуется из витамина К1 (его содержание выше в печени, почках, сердце). Его довольно много в птице, яйцах и твердом сыре.

Витамины К очень быстро метаболизируются и выводятся, в организме их запас не поддерживается, его надо постоянно пополнять. Единственный биомаркер дефицита витамина К — это протромбиновое время. 

И что про витамин К-то?

 4. У людей старше 45 лет (и до глубокой старости), чем больше поступает с едой витамин К2, тем меньше вероятность развития депрессии.

olzetta, Francesco & Veronese, Nicola & Stubbs, Brendon & Noale, Marianna & Vaona, Alberto & Demurtas, Jacopo & Celotto, Stefano & Cacco, Chiara & Cester, Alberto & Caruso, Maria & Reddavide, Rosa & Notarnicola, Maria & Maggi, Stefania & Koyanagi, Ai & Fornaro, Michele & Firth, Joseph & Smith, Lee & Solmi, Marco. (2019). The Relationship between Dietary Vitamin K and Depressive Symptoms in Late Adulthood: A Cross-Sectional Analysis from a Large Cohort Study. Nutrients. 11. 10.3390/nu11040787. 

 5. У людей с хронической почечной недостаточностью субклинический дефицит витамина К 

Cozzolino, M., Mangano, M., Galassi, A., Ciceri, P., Messa, P., & Nigwekar, S. (2019). Vitamin K in Chronic Kidney Disease. Nutrients, 11(1), 168. https://doi.org/10.3390/nu11010168

 6. На животных и ин витро было показано, что витамин К1 подавляет образование кристаллов в ткани почек.

Li Y, Lu X, Yang B, Mao J, Jiang S, Yu D, Pan J, Cai T, Yasui T, Gao B: Vitamin K1 Inhibition of Renal Crystal Formation through Matrix Gla Protein in the Kidney. Kidney Blood Press Res 2019;44:1392-1403. doi: 10.1159/000503300

Что еще известно о нейроиммунологии биполярного расстройства? Что такое кинурениновый путь метаболизма триптофана?

Сегодня читала три статьи про нейроиммунологию биполярного расстройства, опубликованные в разных журналах в 2019-2020 году. Совершенно друг другу не противоречат ? (…было бы странно, если бы противоречили).

Вот основные тезисы.

При БАР выявляются:

 ⁃ дисфункция иммунной системы, в том числе повышенный уровень воспалительных цитокинов (как в маниакальной, так и в депрессивной фазе заболевания); чем выше уровень воспалительных цитокинов, тем хуже ответ на лечение нормотимиками при БАР и антидепрессантами при униполярной депрессии; (ну, что воспалительные цитокины вызывают депрессивные состояния, известно всем, у кого когда-либо что-то сильно воспалялось; а сейчас после знакомства с понятием “цитокинового шторма” это вообще мэйнстримное знание, насколько можно судить); но тут важен кинурениновый путь метаболизма триптофана, см.ниже;

 ⁃ повышенный уровень С-реактивного белка, особенно в маниакальной фазе; 

 ⁃ повышенное количество лейкоцитов;

 ⁃ повышенное количество нейтрофилов;

 ⁃ гиперактивность Т-лимфоцитов;

 ⁃ постоянная или периодическая повышенная проницаемость гематоэнцефалического барьера, которая может быть вызвана избыточной активацией клеток глии;

 ⁃ нарушения миелинизации нейронов, связанные, вероятно, с нарушением активности олигодендроцитов;

 ⁃ значительное количество локусов метилирования ДНК (это один из механизмов того, как наша биография становится биологией (причем не только нашей, но и потомков));

 ⁃ окислительный стресс и митохондриальная дисфункция, в частности, нарушен процесс “отбраковки” поврежденных участков митохондрий;

 ⁃ недостаточность трофических факторов ЦНС, при этом выявляется характерный для БАР полиморфизм гена, отвечающего за мозговой трофический фактор (BDNF);

 ⁃ нарушение чувствительности оси гипоталамус-гипофиз-надпочечники, избыточная секреция кортизола, уменьшение количества рецепторов к глюкокортикодам; при этом тут заметны колебания в зависимости от фазы болезни;

 ⁃ сбои/ сдвиги циркадианного ритма, связанные с нарушением секреции мелатонина; они, в свою очередь, способствуют “разбалансировке” иммунной системы и нарушению чувствительности оси гипоталамус-гипофиз-надпочечники;

 ⁃ в некоторых случаях БАР —  избыточное количество жировой ткани (особенно в области живота), которое само по себе является источником воспалительных цитокинов; при этом и гиподинамия в депрессивной фазе, и нарушение регуляции голода/насыщения при избыточном количестве кортизола, и представления о том, что мозг питается только глюкозой, способствуют избыточному поступлению углеводов и тем самым накоплению жировой ткани;

 ⁃ ускорение биологического старения.

Отдельное внимание уделяется кинурениновому пути метаболизма триптофана. В присутствии воспалительных цитокинов активируется фермент индоламин-2,3-диоксигеназа, преобразующий триптофан не в серотонин, а в кинуренин. Количество кинуренина положительно коррелирует с интенсивностью симптомов депрессии (как униполярной, так и депрессивной фазы БАР). 

Далее в клетках глии кинуренин превращается в астроцитах в кинуреновую кислоту, а в клетках микроглии — в гидроксикинуренин и хинолиновую кислоту (которые способствуют активации рецепторов в клеточной мембране, которые закачивают в клетку избыточное количество кальция. Из-за этого, в частности, в клетках мозга нарушается функция митохондрий, производится избыточное количество свободных радикалов и синтезируются воспалительные цитокины. Кинуреновая кислота в какой-то степени выступает как нейропротектор, но когда ее слишком много, это может сопровождаться психотическими симптомами.

Ну и, соответственно, когда триптофан преобразован в кинуренин, на синтез серотонина и далее мелатонина его не хватает. Но если просто добавить триптофана, толку мало, т.е. будет больше кинуренина. 

Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, et al. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. Braz J Psychiatry. 2020;42:536-551. http://dx.doi.org/10.1590/1516-4446-2019-0732

Benedetti, F., Aggio, V., Pratesi, M. L., Greco, G., & Furlan, R. (2020). Neuroinflammation in Bipolar Depression. Frontiers in psychiatry, 11, 71. https://doi.org/10.3389/fpsyt.2020.00071

Niu, Z., Yang, L., Wu, X., Zhu, Y., Chen, J., & Fang, Y. (2019). The Relationship Between Neuroimmunity and Bipolar Disorder: Mechanism and Translational Application. Neuroscience bulletin, 35(4), 595–607. https://doi.org/10.1007/s12264-019-00403-7

Как у людей с шизофренией и БАР обстоят дела с митохондриями?

В новый год с обнимку с митохондриями ? в смысле, я прочитала 9 статей про особенности (дис)функции митохондрий при биполярном расстройстве и шизофрении.

В двух словах: есть явные проблемы с митохондриями, которые возможно компенсировать, используя как психотропные препараты, так и (или) другие вмешательства, оптимизирующие функцию митохондрий. Мне кажется, это имеет отношение и к нынешнему вирусу, про который известно, что он выбирает своей мишенью митохондрии. 

Желающие погрызть гранит науки, добро пожаловать ? 

Что уже знала к моменту чтения:

 ⁃ пока не существует биомаркеров, которые бы могли помочь предсказать, какие лекарства помогут какому пациенту (подбор осуществляется методом проб и наблюдения за соотношением положительного результата и отрицательных побочных эффектов); было бы реально круто, если бы такие биомаркеры были; 

 ⁃ работа митохондрий, эффективное производство энергии, регуляция внутриклеточной концентрации кальция и подвижность митохондрий крайне важны для клеток мозга, потому что синаптогенез и обусловленная им нейропластичность — крайне энергоемкие процессы;

 ⁃ дизрегуляция концентрации кальция и дисфункция митохондрий взаимно обусловливают друг друга; 

 ⁃ выделение нейротрансмиттеров и их обратный захват — также энергоемкие процессы, и функция митохондрий влияет и на них;

 ⁃ чтобы образовывались синапсы и выделялись нейротрансмиттеры, нужно, чтобы митохондрии внутри клеток были достаточно подвижными; высокая концентрация кальция и АДФ в клетке снижает подвижность митохондрий;

 ⁃ неоптимальная работа митохондрий приводит к окислительному стрессу — свободные радикалы окисляют все, что им попадается (ДНК и РНК, липиды, белки);

 ⁃ большая часть свободных радикалов выделяется при работе первого комплекса (особенно при нехватке коэнзима Q10); для их нейтрализации нужно достаточное количество антиоксидантов, производимых преимущественно самой клеткой;

 ⁃ хроническое воспаление повышает проницаемость митохондриальных мембран для свободных радикалов;

 ⁃ гипоксия ведет к повышению выделения свободных радикалов митохондриями; 

 ⁃ выделение свободных радикалов митохондриями — “заразный” процесс, одни митохондрии могут индуцировать другие;

 ⁃ окисление липидов, составляющих миелиновые оболочки отростков нейронов, ведет к нарушениям электрической проводимости и проблемам с передачей нервных импульсов;

 ⁃ для того, чтобы синтезировать и собрать воедино белки, составляющие комплексы передачи электронов в митохондриальной мембране, требуется участие как митохондриальной ДНК, так и ядерной ДНК;

 ⁃ митохондрии могут сливаться друг с другом и разделяться на более мелкие; процессы слияния помогают повышать эффективность производства энергии, процессы деления помогают отбраковывать поврежденные участки митохондриальных мембран;

 ⁃ митохондрии, будучи поврежденными, производят массу воспалительных цитокинов;

 ⁃ митохондрии при определенных условиях запускают процесс клеточной смерти (апоптоза).

Что узнала, чего раньше не знала:

 ⁃ и у пациентов с шизофренией, и у пациентов с биполярным расстройством обнаруживаются митохондриальные дисфункции (много разных вариантов);

 ⁃ если сравнивать пациентов и здоровых людей, у пациентов обнаруживаются отклонения в нескольких параметрах, связанных с функциями митохондрий; включая малую способность потреблять кислород, увеличенную утечку протонов и изменение концентрации разных белков, регулирующих функции митохондрий и их взаимодействие с клеткой в целом; 

 ⁃ при этом те же проблемы с митохондриями у многих пациентов можно обнаружить в лейкоцитах, лимфоцитах и тромбоцитах, а не только в нейронах, что гораздо удобнее для исследований и выработки диагностических маркеров;

 ⁃ при шизофрении наблюдаются изменения в метаболизме некоторых участков мозга (там отличается концентрация глюкозы, креатинфосфата и АТФ, при этом есть корреляция между концентрацией этих веществ и выраженностью редуктивной симптоматики);

 ⁃ у пациентов с биполярным расстройством и шизофренией в мозге более высокая, чем у здоровых, концентрация молочной кислоты, что указывает на то, что процессы окислительного фосфорилирования у них неэффективны и клетки прибегают к гликолизу как способу производства энергии; 

 ⁃ наиболее заметны у пациентов с шизофренией и биполярным расстройством нарушения работы первого комплекса передачи электронов (именно там образуется большая часть свободных радикалов); 

 ⁃ при этом у пациентов с биполярным расстройством нарушения работы первого комплекса достаточно типичны внутри группы (и связаны именно с нарушением передачи электронов), в то время как у пациентов с шизофренией нарушения работы первого комплекса самые разные;

 ⁃ у людей с митохондриальной дисфункцией как основным заболеванием, особенно с нарушением работы первого комплекса, достаточно часто наблюдаются симптомы, напоминающие психотические; 

 ⁃ в частности, биполярное расстройство возникает у них в 20 раз чаще, чем в выборке из генеральной совокупности; 

 ⁃ избыточная активность первого комплекса коррелирует с выраженностью продуктивной симптоматики при шизофрении; она заметно усиливается в острых состояниях;

 ⁃ митохондрии оказываются мишенью воздействия различных психотропных препаратов; некоторые препараты уменьшают количество потребляемого клеткой кислорода;

 ⁃ генетическая предрасположенность к биполярному расстройству и шизофрении может быть связана с мутациями в митохондриальной ДНК (что усиливает роль “наследования по материнской линии”); 

 ⁃ при этом наблюдается нарушение процессов слияния и разделения митохондрий у пациентов с шизофренией и биполярным расстройством; 

 ⁃ циклическая природа биполярного расстройства может объясняться колебанием в эффективности работы митохондрий (при (гипо)мании митохондрии работают гораздо быстрее, в результате получается “очень много энергии” и “очень много нейротрансмиттеров”); в том числе, это может быть связано с тем, что у людей с биполярным расстройством митохондрии в целом меньше по размеру, чем у здоровых; 

 ⁃ длительный (несколько лет) прием психотропных препаратов нормализует большую часть функций митохондрий (за исключением утечки протонов, которая у пациентов продолжает быть выше, что свидетельствует о том, что есть распаренность между комплексами передачи электронов и АТФ-синтазой и нарушения поддержания оптимального мембранного потенциала);

 ⁃ при шизофрении обнаруживаются дефекты белка, отвечающего за транспорт митохондрий внутри клетки; кроме того, что это уменьшает их подвижность, это еще не дает митохондриям эффективно секвестрировать кальций и ведет к повышению концентрации кальция в цитозоле; 

 ⁃ психотропные препараты, применяемые при шизофрении и биполярном расстройстве, влияют на концентрацию кальция; 

 ⁃ в частности, литий блокирует некоторые кальциевые каналы;

 ⁃ литий вообще может оптимизировать функцию митохондрий, но важна концентрация (слишком высокая концентрация лития угнетает функцию митохондрий) и важна специфика имеющихся митохондриальных дисфункций; 

 ⁃ вальпроевая кислота помогает регулировать концентрацию кальция, но оказывает сильное влияние на клеточный метаболизм, в том числе, делая аэробное дыхание менее эффективным как при использовании глюкозы, так и при использовании кетоновых тел в качестве топлива; 

 ⁃ оптимизации функции митохондрий у людей с биполярным расстройством сопутствует удлинение теломер (т.е. это противостоит одному из факторов биологического старения);

 ⁃ есть разница в некоторых метаболических параметрах между пациентами с униполярной депрессией и пациентами в депрессивной фазе биполярного расстройства, и эти параметры могут использоваться для дифференциальной диагностики; один из этих параметров — уровень мочевой кислоты (у людей с биполярным расстройством он бывает выше); также было обнаружено, что у людей с биполярным расстройством повышена активность первого комплекса (см.выше), а у людей с униполярной депрессией — не повышена; активность второго комплекса у всех людей с депрессией снижена по сравнению со здоровыми (…отсюда возможная польза янтарной кислоты? – ДК.); активность четвертого комплекса существенно снижена у людей с биполярным расстройством по сравнению с людьми с депрессией и здоровыми; также у людей с биполярным расстройством существенно снижена активность фермента цитратсинтазы. 

Bar-Yosef, T., Hussein, W., Yitzhaki, O., Damri, O., Givon, L., Marom, C., Gurman, V., Levine, J., Bersudsky, Y., Agam, G., & Ben-Shachar, D. (2020). Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: a proof of concept study. Scientific reports, 10(1), 12258. https://doi.org/10.1038/s41598-020-69207-4

Machado, A. K., Pan, A. Y., da Silva, T. M., Duong, A., & Andreazza, A. C. (2016). Upstream Pathways Controlling Mitochondrial Function in Major Psychosis: A Focus on Bipolar Disorder. Canadian journal of psychiatry. Revue canadienne de psychiatrie, 61(8), 446–456. https://doi.org/10.1177/0706743716648297

Bergman, O., & Ben-Shachar, D. (2016). Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes. Canadian journal of psychiatry. Revue canadienne de psychiatrie, 61(8), 457–469. https://doi.org/10.1177/0706743716648290

Kato T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr Res. 2017 Sep;187:62-66. doi: 10.1016/j.schres.2016.10.037. Epub 2016 Nov 10. PMID: 27839913.

M. ĽUPTÁK , J. HROUDOVÁ. Important Role of Mitochondria and the Effect of Mood Stabilizers on Mitochondrial Function.

Physiol. Res. 68 (Suppl. 1): S3-S15, 2019 

https://doi.org/10.33549/physiolres.934324

Cikánková T, Fišar Z, Hroudová J. In vitro effects of antidepressants and mood-stabilizing drugs on cell energy metabolism. Naunyn Schmiedebergs Arch Pharmacol. 2020 May;393(5):797-811. doi: 10.1007/s00210-019-01791-3. Epub 2019 Dec 19. PMID: 31858154.

Lundberg, M., Millischer, V., Backlund, L., Martinsson, L., Stenvinkel, P., Sellgren, C. M., Lavebratt, C., & Schalling, M. (2020). Lithium and the Interplay Between Telomeres and Mitochondria in Bipolar Disorder. Frontiers in psychiatry, 11, 586083. https://doi.org/10.3389/fpsyt.2020.586083

Zvěřová, M., Hroudová, J., Fišar, Z., Hansíková, H., Kališová, L., Kitzlerová, E., Lambertová, A., & Raboch, J. (2019). Disturbances of mitochondrial parameters to distinguish patients with depressive episode of bipolar disorder and major depressive disorder. Neuropsychiatric disease and treatment, 15, 233–240. https://doi.org/10.2147/NDT.S188964

Что известно о психонейроэндокриноиммунологии биполярного расстройства?

Вторая глава в книге “Вскрытие мозга. Нейробиология психических расстройств” посвящена биполярному расстройству. 

Что пишут:

 ⁃ при БАР нарушен метаболизм в разных участках мозга;

 ⁃  наблюдаются различные клеточные и молекулярные изменения, которые могут влиять на нейронные связи (нейровоспаление, окислительный стресс, апоптоз, митохондриальная дисфункция и др.). 

Пошла в Пабмед почитать, что пишут еще. 

Воспроизведенные эпидемиологические исследования показали, что БАР часто оказывается коморбидно воспалительным заболеваниям, включая аутоиммунные заболевания, хронические инфекции, сердечно-сосудистые заболевания и нарушения метаболизма. 

У пациентов с БАР чаще, чем в генеральной совокупности, встречаются такие заболевания, как хронический колит, системная красная волчанка, аутоиммунный тиреоидит, синдром Гийена-Барре, аутоиммунный гепатит, ревматоидный артрит, рассеянный склероз, псориаз, токсоплазмоз, герпес, цитомегаловирус, краснуха, подагра, диабет 2 типа, метаболический синдром, ожирение, нарушения жирового обмена, гипертония, атеросклероз, сосудистые явления (инфаркт, инсульт). 

При этом наличие хронических инфекций ухудшает когнитивные функции и прогноз развития заболевания. В частности, ученые из Тайваня (2) обнаружили, что хронический периодонтит повышает вероятность возникновения биполярного расстройства.

Присутствие подагры в качестве коморбидности указывает на нарушение обмена пуриновых оснований и накопление мочевой кислоты. В одном из исследований было показано, что такое лекарство от подагры, как аллопуринол, снижает выраженность маниакальных состояний при БАР. 

Уровень воспалительных цитокинов у некоторых людей с БАР повышен, а во время заметных изменений настроения повышен еще сильнее, что указывает на нарушения работы врожденного иммунитета. Для некоторых пациентов с БАР полезным оказывается лечение противовоспалительными препаратами. Ждем лонгитюдных исследований, которые смогут показать, связана ли концентрация цитокинов со сменой фазы заболевания, и если да, то каким образом. Цитокины воздействуют на пути синтеза моноаминов-нейротрансмиттеров, поэтому воздействие на процесс воспаления – “выше по течению” биохимических процессов в организме, чем воздействие на сами моноамины. В частности, цитокины воздействуют на глютаматэргические системы мозга, что ведет к нарушению работы кальциевых каналов, повышению концентрации кальция в клетках мозга, эксайтотоксичности и нарушениям нейропластичности. 

Дисфункция иммунной системы, воспалительные заболевания и БАР все могут взаимно влиять друг на друга. Современные исследования (3) обнаруживают, что одни и те же гены определяют как некоторые психические заболевания, так и расстройства иммунной системы. 

У пациентов с БАР наблюдается повышенный уровень окислительного стресса и дефицит антиоксидантов, что указывает на митохондриальную дисфункцию. 

Показано, что у пациентов с БАР нарушена регуляция секреции кортизола и часто присутствует повышенный уровень кортизола. 

Существует гипотеза, что переход заболевания из одной фазы в другую может быть спровоцирован изменениями в кишечном микробиоме. Описан клинический случай, когда маниакальное состояние пациента было купировано приемом активированного угля. 

вообще материалов по психонейроэндокриноиммунологии БАР довольно много, я пока их собираю и дальше буду рассказывать постепенно.

(1) Rosenblat, J. D., & McIntyre, R. S. (2017). Bipolar Disorder and Immune Dysfunction: Epidemiological Findings, Proposed Pathophysiology and Clinical Implications. Brain sciences, 7(11), 144. https://doi.org/10.3390/brainsci7110144

(2) Huang YK, Wang YH, Chang YC. Chronic Periodontitis Is Associated with the Risk of Bipolar Disorder: A Population-Based Cohort Study. Int J Environ Res Public Health. 2020 May 15;17(10):3466. doi: 10.3390/ijerph17103466. PMID: 32429260; PMCID: PMC7277490.

(3) Tylee DS, Sun J, Hess JL, Tahir MA, Sharma E, Malik R, Worrall BB, Levine AJ, Martinson JJ, Nejentsev S, Speed D, Fischer A, Mick E, Walker BR, Crawford A, Grant SFA, Polychronakos C, Bradfield JP, Sleiman PMA, Hakonarson H, Ellinghaus E, Elder JT, Tsoi LC, Trembath RC, Barker JN, Franke A, Dehghan A; 23 and Me Research Team; Inflammation Working Group of the CHARGE Consortium; METASTROKE Consortium of the International Stroke Genetics Consortium; Netherlands Twin Registry; neuroCHARGE Working Group; Obsessive Compulsive and Tourette Syndrome Working Group of the Psychiatric Genomics Consortium, Faraone SV, Glatt SJ. Genetic correlations among psychiatric and immune-related phenotypes based on genome-wide association data. Am J Med Genet B Neuropsychiatr Genet. 2018 Oct;177(7):641-657. doi: 10.1002/ajmg.b.32652. Epub 2018 Oct 16. PMID: 30325587; PMCID: PMC6230304.

Что пишут Касьянов и Филиппов про нейробиологию шизофрении?

“Тема мозга не раскрыта” ? это был самый часто встречающийся комментарий ко вчерашнему посту про “карту исцеления”, собранную по книгам Донны Джексон Наказавы и Бессела ван дер Колка. 

Совершенно согласна. Мозг — дело настолько сложное и тонкое, что, не будучи, собственно, нейроученым, подходить к нему хочется с осторожностью. Но внимательно читать и думать отсутствие специализации нам не запретит ? 

Поэтому сегодня мои загребущие лапы потянулись к книге “Вскрытие мозга. Нейробиология психических расстройств” (авторы Е.Касьянов и Д.Филиппов). 

В первой главе они с места в карьер берутся за самое “страшное и непонятное”: шизофрению. Я прожила довольно много лет с человеком с этим диагнозом, и я до сих пор вздрагиваю при воспоминаниях о том, что такое “острый психоз”. И при воспоминаниях о том, как я пыталась разобраться в том, какова моя роль в возникновении обострений, тоже вздрагиваю и аж дышать перестаю. 

Кроме этого человека, у меня было еще несколько знакомых с похожими симптомами, примерно поровну “с диагнозом” и “без диагноза”, и примерно поровну “адаптивных” и “дезадаптивных”. Если иметь в виду, что в среднем распространенность шизофрении в человеческой популяции составляет 1%, то не так-то и много людей, которых я могу наблюдать достаточно близко, чтобы заметить сопутствующие проявления. 

Что пишут Касьянов и Филиппов о шизофрении? Они описывают историю взглядов психиатрии, с конца 19-го века до начала 21-го, на этот диагноз. 

Вкратце:

 ⁃ психотическое состояние бывает много от чего, включая инсульт и менингит различной этиологии;

 ⁃ сама по себе “шизофрения” — это “диагноз-зонтик”, т.е. одним названием обозначают разные заболевания с похожими проявлениями (в лучшем случае, в худшем — это “диагноз-помойка”, куда собирается все то, что не могли отнести к какому-то другому заболеванию);

 ⁃ как и все психические расстройства, шизофрения имеет биопсихосоциальную природу, но при этом генетические и близнецовые исследования показывают, что генетическая предрасположенность определяет вероятность развития болезни на 80% (т.е. “бочка” заполнена на 80%, а средовые влияния /“вливания” в развитии симптомов составляют 20%); 

 ⁃ что-то там явно отличается (от структуры мозга здоровых людей) в цитоархитектуре, расположении нейронов и их связи друг с другом;

 ⁃ что-то отличается и в работе систем нейромедиаторов (дофамина, глютамата, серотонина);

 ⁃ есть больше 100 генов, отвечающих за риск развития шизофрении, но они отвечают не только за это; они “вкладываются” в развитие и других психических нарушений, а также некоторые из них отвечают за некоторые аспекты работы иммунной системы и кальциевых каналов. 

Чего мне не хватило в этой главе, т.е. какие у меня остались вопросы, ответы на которые придется искать в других местах.

 1. А как же глия? Вообще ничего про глию толкового не написано, равно как и про работу глимфатической системы. Понятно, что глимфатическая система — это “свежачок”, может еще не быть достаточного количества исследований. Но дико интересно. Потому что на уровне бытового наблюдения за человеком с психотическим расстройством: да, токсическая нагрузка на мозг совершенно точно связана с тяжестью состояния. 

 2. А как же нейровоспаление? Тоже ничего не написано тут, а было бы интересно. 

 3. А как же проницаемость барьерных эпителиев? Хотелось бы знать, как у людей с шизофренией обстоят дела с этим. 

 4. А инсулинорезистентность клеток мозга? 

 5. А микробиом? Есть ли какие-то отличия микробиома?

 6. А пищевые дефициты? Оказывают ли они какое-то влияние? 

 7. А как насчет синхронизации ритмов электрической активности мозга? Как с этим при шизофрении? 

 8. Так что с кальциевыми каналами-то при шизофрении?

Потому что, ясное дело, вопрос “как сделать так, чтобы человек с определенными врожденными характеристиками не выходил в тяжелое дезадаптивное состояние”. Что там в этих 20% средовых влияний, на что можно хоть как-то повлиять, потому что там каждая кроха ценна. И не только для того, чтобы уменьшить страдание самого человека, но и для того, чтобы помочь тем, кто с ним живет (тут у меня как болело за себя, так и за других болит очень). 

Может ли пищевой кетоз быть способом уменьшить нейровоспаление? (пересказ обзора исследований)

Вчера я нашла статью, в которой мне захотелось покопаться подробнее. Она опубликована в 2020 г. в журнале “Европейская психиатрия” (официальном журнале Европейской психиатрической ассоциации) и называется “Пищевой кетоз как вмешательство, способное уменьшить астроглиоз: перспективы лечения нейродегенеративных заболеваний и нейропсихиатрических синдромов”. 

Это большой обзор биологических механизмов воздействия пищевого кетоза на мозг (при подготовке обзора использованы 347 источников).

Что известно:

Пищевой кетоз достигается разными способами, в частности

 ⁃ добавлением в рацион среднецепочечных жирных кислот

 ⁃ добавлением в рацион кокосового масла

 ⁃ радикальным снижением количества углеводов

 ⁃ сужением “пищевого окна” и голоданием

 ⁃ кетогенная диета стимулирует мозговой трофический фактор (BDNF)

 ⁃ кетогенная диета часто помогает при эпилепсии (причем как детям, так и взрослым)

 ⁃ есть положительные результаты при применении кетогенной диеты на ранних стадиях деменции, в т.ч. при болезни Альцгеймера

 ⁃ есть указания на возможную пользу кетогенной диеты при болезни Паркинсона, шизофрении, биполярном расстройстве и расстройствах аутистического спектра

На пациентах с клинической депрессией (MDD) исследований нет, но авторы предполагают, что снижение уровня воспаления и повышение секреции BDNF за счет диеты будет иметь антидепрессивный эффект (по аналогии с механизмами работы антидепрессантов). 

Как именно работает пищевой кетоз в мозге:

 ⁃ Кетоновые тела представляют собой эффективно используемое топливо для клеток, в том числе для клеток мозга, что особенно важно, когда в клетках формируется инсулинорезистентность и нарушается метаболизм глюкозы (что показано при болезни Альцгеймера, БАС, болезни Паркинсона, хорее Хантингтона, шизофрении, биполярном расстройстве и депрессии).

 ⁃ Кетоновые тела синтезируются в печени и экспортируются во все органы, нуждающиеся в энергии. При повышении концентрации кетоновых тел в крови, они проходят через гематоэнцефалический барьер при помощи специальных транспортеров, синтезируемых клетками этого барьерного эпителия. При длительном пищевом кетозе синтез этих транспортеров увеличивается в 10 раз по сравнению с состоянием вне кетоза, и кетоновые тела составляют 60-70% источников энергии мозга. 

 ⁃ Пищевой кетоз снижает окислительный стресс, снижает воспаление и улучшает функции митохондрий. Эта триада симптомов нарушает нормальное взаимодействие между нейронами, астроцитами и клетками микроглии. Нарушение митохондриальной функции астроцитов и клеток микроглии особенно пагубно для здоровья мозга. 

 ⁃ Избыточное количество свободных радикалов в мозге индуцирует гиперреактивное дисфункциональное состояние астроцитов (астроглиоз). Именно развитие этого состояния является поворотным моментом, запускающим нейропсихиатрические синдромы и нейродегенеративные заболевания. Поэтому астроциты сейчас оказываются основной мишенью терапевтического воздействия.

 ⁃ При кетозе повышается количество АТФ в мозге, количество митохондрий и продуктивность митохондрий (как в нейронах, так и в клетках глии), снижается количество свободных радикалов и укрепляется защита клеток эндогенными антиоксидантами (и в астроцитах это происходит интенсивнее, чем в нейронах); снижается уровень нейровоспаления; лучше поддерживается гомеостаз мозга.

В понятии “гомеостаз мозга” выделяются четыре уровня:

 ⁃ метаболический гомеостаз (формирование контактов между сосудами (кровеносными и лимфатическими) и клетками ЦНС; функционирование гематоэнцефалического барьера; регуляция кровотока и снабжения мозга кислородом; метаболическая поддержка нейронов);

 ⁃ нейронно-сетевой гомеостаз (развитие нейронных сетей и цепей; синаптическая пластичность; синаптогенез; обрезка ненужных синапсов);

 ⁃ молекулярный гомеостаз (вода, калий, кальций, аденозин, нейротрансмиттеры (в первую очередь глютамат и ГАМК));

 ⁃ системный гомеостаз (сон/бодрствование; оценка состояния системы рецепторами к CO2, pH, Na+, глюкозе).

Астроглиоз — гиперреактивное состояние астроцитов, развивающееся в ответ на даже небольшие отклонения биохимических характеристик мозга от гомеостаза. В частности, астроглиоз провоцируется воспалительными цитокинами, большим количеством свободных радикалов и липополисахаридами (элементами клеточной стенки патогенных бактерий, проникающими в кровоток из кишечника). При астроглиозе астроциты не могут полноценно выполнять свои функции (обеспечение нейронов кислородом и питательными веществами, поддержание гомеостаза ионов, “уборка” продуктов метаболизма). Наиболее пагубным является изменение структуры астроцитов (меньше “ножек”/ протрузий, которыми астроцит соприкасается с сосудами и с нейронами); также при астроглиозе повышается проницаемость гематоэнцефалического барьера (что еще больше нарушает гомеостаз мозга), и нарушается работа цикла преобразования глютамата в глютамин (что умеют делать только астроциты; в результате возникает эксайтотоксичность из-за избытка глютамата в мозге). 

Кетоновые тела (а также антиоксиданты и полиненасыщенные жирные кислоты) нормализуют работу натрий-калиевых насосов в клеточных мембранах (базовый механизм транспорта веществ в клетку и из нее, а также поддержания разности потенциалов). 

Именно астроциты перерабатывают жирные кислоты в кетоновые тела, чтобы снабжать ими нейроны при малом поступлении глюкозы в мозг. Кетоновые тела ограничивают синтез глютамата в нейронах и астроцитах (это может еще происходить в результате изменения кишечного микробиома под воздействием кетогенной диеты). 

Изменение кишечного микробиома под воздействием кетогенной диеты влияет на количество эндогенных короткоцепочечных жирных кислот и на проницаемость кишечного эпителия (при снижении проницаемости кишечного эпителия уменьшается периферическое воспаление). Бета-гидроксибутират (наиболее часто встречающееся кетоновое тело) непосредственно оказывает противовоспалительное воздействие. 

Morris G, Maes M, Berk M, Carvalho AF, Puri BK (2020). Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. European Psychiatry, 63(1), e8, 1–21 https://doi.org/10.1192/j.eurpsy.2019.13

А как же таурин?

Читая вчера у доктора Ноу про поражение клеток при ишемии-реперфузии (когда сначала они страдают от кислородной недостаточности, а потом снова получают нормальное количество кислорода), я удивилась, что он не упомянул в качестве защитного фактора серосодержащую аминокислоту таурин. 

С этим скромным героем (в смысле, с таурином) я познакомилась несколько лет назад, когда рассматривала проблемы, с которыми сталкиваются люди, соблюдающие строгую веганскую диету (и по тем или иным причинам не едящие водоросли). Таурин — полунезаменимая аминокислота; то есть, в организме человека она синтезируется, но это энергоемкий и многоступенчатый процесс. Гораздо проще оказывается получить таурин с пищей или в виде добавки. 

Сейчас я думаю про таурин, опять же, в контексте того, что ковид атакует митохондрии, и, как мне кажется, важно знать про все, что может их защитить (как профилактически, так и после того, как организм уже столкнулся с вирусом). 

Поэтому мое сегодняшнее утреннее чтение было в Пабмеде в обнимку с ключевым словом “таурин”. Статей много, я просмотрела пока семь, но и это дает много полезной информации. 

Знакомьтесь: таурин.

Таурин встречается в высокой концентрации в тканях, получающих энергию посредством окислительных процессов, и в меньшей концентрации в тканях, получающих энергию посредством процессов гликолиза. Таурин играет важную роль в функции митохондрий; в клетках эта аминокислота локализуется именно в митохондриях. Наиболее высока концентрация таурина в мозге, сетчатке глаза, сердце и половых железах; также в существенном количестве он присутствует в скелетных мышцах. 

Мыши, не имеющие транспортера таурина, страдают от митохондриальной недостаточности. In vitro было показано, что добавление таурина ведет к тому, что при транскрипции митохондриальной ДНК в РНК получается меньше РНК с мутациями, характерными для митохондриального синдрома. 

Таурин помогает поддерживать оптимальный кислотно-щелочной баланс для функционирования митохондрий как “энергетических станций” клетки. Он защищает митохондрии от избыточного слияния и распада в ситуациях гипоксии-реперфузии (поэтому используется как протектор во время операций на сердце и мозге, а также для восстановления клеток мышечной ткани после гипоксии). Клетки, получившие дополнительный таурин, оказываются защищены от повреждения при последующем испытании гипоксией. 

Таурин является нейропротектором в ситуации ишемического инсульта. Также он играет важную роль в нейрогенезе и нейропластичности. 

Таурин обладает противовоспалительным действием за счет ап-регуляции синтеза противовоспалительного цитокина интерлейкина-10 (показано на ожоговых пациентах). 

При диабете наблюдается уменьшение концентрации таурина в плазме. Было показано, что добавление 1 г таурина приводило к статистически значимому повышению активности ферментов-антиоксидантов (супероксид-дисмутазы и каталазы), снижению уровня С-реактивного белка и фактора некроза опухоли-альфа по сравнению с плацебо. 

Таурин оказывает защитное действие на стенки сосудов; нормализует работу ренин-ангиотензиновой системы; снижает инсулинорезистентность; повышает уровень адипонектина.

Таурин модулирует иммунный ответ (причем как будучи принятым профилактически, так и после острого поражения легких (исследование на крысах)).

Таурин снижает уровень арахидоновой кислоты в плазме крови (она повышает вероятность тромбоза). 

Таурин содержится в высокой концентрации в водорослях (существенно выше, чем во всем остальном), рыбе, моллюсках, и в несколько меньшей — в мясе животных и птиц, и в яйцах. 

Qaradakhi, T., Gadanec, L. K., McSweeney, K. R., Abraham, J. R., Apostolopoulos, V., & Zulli, A. (2020). The Anti-Inflammatory Effect of Taurine on Cardiovascular Disease. Nutrients12(9), 2847. https://doi.org/10.3390/nu12092847

Hansen, S. H., Andersen, M. L., Cornett, C., Gradinaru, R., & Grunnet, N. (2010). A role for taurine in mitochondrial function. Journal of biomedical science17 Suppl 1(Suppl 1), S23. https://doi.org/10.1186/1423-0127-17-S1-S23

Milei J, Ferreira R, Llesuy S, Forcada P, Covarrubias J, Boveris A. Reduction of reperfusion injury with preoperative rapid intravenous infusion of taurine during myocardial revascularization. Am Heart J. 1992 Feb;123(2):339-45. doi: 10.1016/0002-8703(92)90644-b. PMID: 1736568.

Lak S, Ostadrahimi A, Nagili B, Asghari-Jafarabadi M, Beigzali S, Salehi F, Djafarzadeh R. Anti-Inflammatory Effect of Taurine in Burned Patients. Adv Pharm Bull. 2015 Nov;5(4):531-6. doi: 10.15171/apb.2015.072. Epub 2015 Nov 30. PMID: 26819926; PMCID: PMC4729355.

Maleki V, Mahdavi R, Hajizadeh-Sharafabad F, Alizadeh M. The effects of taurine supplementation on oxidative stress indices and inflammation biomarkers in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Diabetol Metab Syndr. 2020 Jan 29;12:9. doi: 10.1186/s13098-020-0518-7. PMID: 32015761; PMCID: PMC6990511.

Thirupathi A, Pinho RA, Baker JS, István B, Gu Y. Taurine Reverses Oxidative Damages and Restores the Muscle Function in Overuse of Exercised Muscle. Front Physiol. 2020 Oct 26;11:582449. doi: 10.3389/fphys.2020.582449. PMID: 33192592; PMCID: PMC7649292.

Menzie, J., Prentice, H., & Wu, J. Y. (2013). Neuroprotective Mechanisms of Taurine against Ischemic Stroke. Brain sciences3(2), 877–907. https://doi.org/10.3390/brainsci3020877

https://examine.com/supplements/taurine/

Все болезни от чего? (вопрос с подвохом, естественно)

Все болезни от чего?

Вы наверняка слышали и читали разные версии, сводящие первопричину всех болезней к чему-то одному (…и нет, я не имею в виду, что “все болезни от нервов, и только некоторые — от удовольствия” ? ). Очень классный механистический подход — реально было бы круто, конечно, найти, как в “Электронике”, “где у него кнопка”, а также как в “Принеси мне голову прекрасного принца” Желязны и Шекли, “если что-то где-то включается, то что-то где-то и выключается”, — пойти и эту кнопку включить (или выключить, уж как лучше).  

Интересно, какие версии вы слышали?

Некоторые начинаются с “Тебе просто надо (__версия__), и чем бы ты ни болел_а, все пройдет”.

Некоторые версии — это Солидное Экспертное Мнение, изложенное в Толстой Книжке (полностью посвященной его обоснованию). О чем автора ни спроси, он в итоге приходит к своей версии “строения блохи”.

Вполне вероятно, что зерно истины в этом есть.

Я сейчас думаю про уровневый подход к этому всему (ниже в списке не все возможные уровни). 

Я слышала/читала версии, что причины всех болезней*

 ⁃ на молекулярном уровне? — это окислительный стресс

 ⁃ на уровне функционирования органелл внутри клетки? — это митохондриальная дисфункция

 ⁃ на уровне коммуникации клеток между собой и с окружающей средой? — это, например, инсулинорезистентность и накопление избыточного количества кальция в клетках

 ⁃ на уровне тканей и органов? — это накопление токсинов и воспаление

 ⁃ на уровне организма-в-среде — это “противоестественный” образ жизни (что есть, когда спать, как двигаться и т.п.)

 ⁃ на уровне психики — это “автопилот” и отсутствие рефлексивного зазора между стимулом и реакцией

 ⁃ на уровне человеческого сообщества — это отсутствие хороших поддерживающих отношений

 ⁃ на уровне экономических и государственных систем — это притеснение в разных его видах

Давайте накидаем известных версий, от чего все болезни, и посмотрим, в какую мозаику они складываются? Истину, вестимо, не обретем, тем более в споре. Тут я, скорее, предлагаю поиграть и занять исследовательскую позицию. Если у вас есть своя версия и вы считаете ее абсолютно однозначно истинной, то здесь в комментах не стоит ломать копья, защищая ее, и не стоит пытаться продать читателям сего свое универсальное средство от всех болезней. 

*конечно, помимо очень существенным образом генетически обусловленных

Только ли в нейротрансмиттерах дело, когда речь идет о депрессии?

Только ли в нейротрансмиттерах дело, когда речь идет о депрессии?

Какие еще гипотезы о биологических механизмах депрессии существуют? И, главное, что это значит для нас?

Вот несколько гипотез:

1. Моноаминовая гипотеза (эта уже упомянута выше). Если депрессия сопровождается разрегулированностью путей производства, метаболизма и всасывания серотонина, дофамина и норадреналина, то, возможно, для преодоления и профилактики депрессии нужно оптимизировать нейротрансмиттеры.  Вопрос, каким образом это можно сделать, помимо фармакологического. 

    2. Гомоцистеиновая гипотеза (у людей с депрессией уровень аминокислоты гомоцистеина в крови выше, чем у людей без депрессии, и чем старше человек, тем более заметна разница). Гомоцистеин токсичен для нейронов. Высокий уровень гомоцистеина бывает связан с нарушениями процессов метилирования, обусловленными полиморфизмами гена MTHFR. В таком случае рекомендуется прием активированных (метилированных) витаминов группы В. 

    3. Воспалительная гипотеза (у людей с депрессией количество воспалительных цитокинов больше, чем у людей без депрессии). В таком случае важно понять, что вызывает и поддерживает воспаление, и по возможности устранить его причину. 

    4. Гипотеза дисбактериоза (у людей с депрессией, по данным некоторых исследований, иной состав микробиома, по сравнению с людьми без депрессии, и это может создавать условия для хронического воспаления). Опираясь на эту гипотезу, одним из путей преодоления и профилактики депрессии будет являться движение в сторону восстановления оптимального микробиома.

    5. Гипотеза митохондриальной дисфункции (показана связь депрессии и нарушения внутриклеточного производства энергии). Соответственно, если опираться на эту гипотезу, то для преодоления и профилактики депрессии важно по возможности восстановить оптимальную работу митохондрий. 

ГОМОЦИСТЕИНОВАЯ ГИПОТЕЗА

Гомоцистеин — серосодержащая аминокислота, образующаяся в организме человека при метаболизме метионина. Уровень гомоцистеина может служить показателем функционального дефицита фолиевой кислоты и витамина В12. Также гомоцистеин получается при метаболизации дофамина. У пациентов, проходящих лечение от болезни Паркинсона препаратом L-dopa, уровень гомоцистеина в крови в среднем на 31% выше, чем у пациентов, не проходящих лечение этим препаратом.

Повышение уровня гомоцистеина обусловлено сочетанием различных генетических предрасположенностей и средовых факторов, из которых самую заметную роль играют дефицит витаминов В2 (рибофлавин), В6 (пиридоксин), В9 (фолиевая кислота) и В12 (кобаламин). Дефицит этих витаминов объясняет 67% дисперсии по уровню гомоцистеина. Другие факторы — это возраст, принадлежность к мужскому полу, а также полиморфизм генов, отвечающих за процессы метилирования. В случае аутоиммунных заболеваний показано наличие во многих случаях полиморфизма генов, отвечающих за процессы метилирования.

Повышенный уровень гомоцистеина является фактором риска развития сердечно-сосудистых заболеваний (в том числе инфаркта, инсульта, микроинсульта, атеросклероза, тромбоза и васкулита), а также деменции (в т.ч. болезни Альцгеймера) и депрессии. При уровне гомоцистеина больше или равном 14 микромоль/ литр риск сердечно-сосудистых заболеваний вдвое выше, чем у людей, у которых уровень гомоцистеина ниже 14 микромоль/литр.

Гомоцистеин негативно влияет на функционирование клеток эндотелия (эпителия сосудов). Одним из следствий этого влияния оказывается повышенное артериальное давление.

Высокий уровень гомоцистеина пагубно влияет на желудочно-кишечный тракт, а также на здоровье костей.

В высоких концентрациях гомоцистеин токсичен для клеток нервной системы, в частности, для клеток черной субстанции, но не только. Он нарушает функционирование митохондрий, вызывает эксайтотоксичность и апоптоз (смерть) клеток, а также блокирует процессы нейрогенеза (генерации новых нервных клеток).

Опосредующим механизмом гомоцистеиновой токсичности является выделение свободных радикалов (особенно при сниженной защитной активности антиоксидантов).

На мышах было показано, что высокий уровень гомоцистеина приводит к снижению концентрации дофамина в дофаминэргических областях мозга. [5]

Повышенная концентрация гомоцистеина повышает вероятность депрессии на 26%.

У трети пациентов с депрессией наблюдается выраженный дефицит фолиевой кислоты (и, соответственно, повышенный уровень гомоцистеина). Эти пациенты хуже всего реагируют на терапию депрессии антидепрессантами. Поэтому важно проверять уровень гомоцистеина при начале терапии антидепрессантами. [4]

Показано, что адьювантные терапии , направленные на снижение уровня гомоцистеина ( в том числе высокодозные терапии метилированными витаминами В, а также использование бетаина (триметилглицина) в качестве дополнительного метильного донора), относительно эффективны для профилактики рецидивов некоторых сердечно-сосудистых заболеваний (но несколько менее эффективны, чем предсказывала теоретическая модель).

Показано, что депрессия, вместе с уровнем гомоцистеина, уменьшается при прочих равных условиях у пожилых людей, получавших дополнительный белок, витамины группы В и микронутриенты. [3]

У больных болезнью Паркинсона, при прочих равных условиях, бОльшая физическая нагрузка была связана с более низким уровнем гомоцистеина.

(1) Rogers JD, Sanchez-Saffon A, Frol AB, Diaz-Arrastia R. Elevated Plasma Homocysteine Levels in Patients Treated With Levodopa: Association With Vascular Disease. Arch Neurol. 2003;60(1):59–64. doi:https://doi.org/10.1001/archneur.60.1.59)

(2) Kevin L. Schalinske, Anne L. Smazal, Homocysteine Imbalance: a Pathological Metabolic Marker, Advances in Nutrition, Volume 3, Issue 6, November 2012, Pages 755–762, https://doi.org/10.3945/an.112.002758

(3) Salah Gariballa, Testing homocysteine-induced neurotransmitter deficiency, and depression of mood hypothesis in clinical practice, Age and Ageing, Volume 40, Issue 6, November 2011, Pages 702–705, https://doi.org/10.1093/ageing/afr086

(4) Bottiglieri T, Laundy M, Crellin R, et al Homocysteine, folate, methylation, and monoamine metabolism in depression Journal of Neurology, Neurosurgery & Psychiatry 2000;69:228-232.

(5) Nivedita Bhattacharjee, Rajib Paul, AnirudhaGiri, Anupom Borah. Chronic exposure of homocysteine in mice contributes to dopamine loss by enhancing oxidative stress in nigrostriatum and produces behavioral phenotypes of Parkinson’s disease. Biochemistry and Biophysics Reports, Volume 6, July 2016, Pages 47-53 https://doi.org/10.1016/j.bbrep.2016.02.013

ГИПОТЕЗА МИТОХОНДРИАЛЬНОЙ ДИСФУНКЦИИ

Митохондриальная дисфункция проявляется в:

1. Нехватке энергии для обеспечения оптимальной жизнедеятельности клеток;
2. Избыточном производстве свободных радикалов;
3. Нарушении внутриклеточного баланса кальция (между цитозолем и митохондриями); избыточное накопление кальция запускает процессы апоптоза клеток.

Иногда митохондриальная дисфункция проявляется не только и не столько в сбоях молекулярных процессов внутри митохондрий, но и в том, что новых/ молодых митохондрий в принципе становится меньше, а жизненный цикл их растягивается, т.е. старые/ менее функциональные митохондрии не устраняются. Иногда митохондриальная дисфункция в нейронах проявляется в том, что они неравномерно распределяются внутри клетки (в теле нейронов их оказывается больше, чем в аксонах). В аксонах митохондрии перемещаются в те места, где будет образовываться синапс. В аксонах концентрация митохондрий примерно вдвое больше, чем в дендритах.

Нарушение митохондриальной функции бывает вызвано сочетанием генетической предрасположенности и средовых факторов, из которых главную роль играет хронический стресс. Важно отметить, что воздействие стресса на митохондриальную функцию связано с природой стресса и с его длительностью. Присутствие гормонов стресса в незначительном количестве является нейропротектором за счет оптимизации митохондриальной функции, тогда как высокие концентрации гормонов стресса нейротоксичны.

Важно также, что симптомы митохондриальной дисфункции могут проявляться при статистически нормальном количестве митохондрий, но при повышенном “спросе” на продукты их жизнедеятельности. Мозгу требуется примерно в 20 раз больше энергии, чем другим тканям организма (того же веса). Проведение нервного импульса, особенно для функции поддержания ритмов (пейсмейкера), требует больших энергетических затрат. Нейрон коры головного мозга в состоянии покоя потребляет до 4,7 миллиардов молекул АТФ в секунду.

Дофаминэргические нейроны особенно уязвимы по отношению к митохондриальным стрессорам.
У дофаминэргических нейронов огромное количество синапсов (например, один дофаминэргический нейрон из черной субстанции мозга крысы может устанавливать синаптические контакты с 75000 нейронов в полосатом теле, а самих синапсов может быть 245000). Дофаминэргические нейроны в черной субстанции человека еще масштабнее — каждый нейрон может образовывать до 2,4 миллиона синапсов, а суммарная длина отростков его аксона может составлять 4,5 метра. При этом эти аксоны не миелинизированы, так что там происходит потеря энергии при передаче импульса.

Митохондрии играют важную роль в процессах нейропластичности. Митохондриальная дисфункция ведет к нарушению нейропластичности. Митохондриальная дисфункция может играть роль в нарушениях процессов нейрогенеза в гиппокампе при депрессии. Показано, что у пациентов с депрессией уменьшается утилизация глюкозы в префронтальной коре, передней поясной (цингулярной) коре и в хвостатом ядре. (2)

Мозг — один из органов, наиболее уязвимых по отношению к воздействию свободных радикалов, производимых митохондриями. В мозге много ненасыщенных жиров, которые под воздействием свободных радикалов перекисно окисляются. Чем выше в крови уровень малондиальдегида (показателя перекисного окисления липидов), тем более выражены симптомы депрессии.

При депрессии уровень производства энергии АТФ меньше, количество свободных радикалов выше, процессы апоптоза развиваются быстрее. Есть данные, что у некоторых больных депрессией нарушены процессы окислительного фосфорилирования.
Было обнаружено, что у больных депрессией снижена продукция АТФ не только в мозге, но и в мышечной ткани, а также в моноцитах в крови.

Показано, что при депрессии наблюдается пагубный эффект свободных радикалов в префронтальной коре. Также показана сниженная активность антиоксидантов и ферментов-антиоксидантов у людей, больных депрессией. Один из эффектов антидепрессантов — восстановление нормального уровня антиоксидантов.

Длительный стресс и высокий уровень кортизола являются депрессогенными факторами. Под воздействием высокого уровня глюкокортикоидов (в первую очередь кортизола), а также воспалительных цитокинов (в первую очередь фактора некроза опухоли- альфа и интерлейкина-6) происходит нарушение функций митохондрий. Воспалительные цитокины запускают в клетках каскад процессов, приводящий к апоптозу.
Хронический стресс также приводит к снижению количества антиоксидантов (в первую очередь глутатиона).
Уровень воспалительных цитокинов, а также показатель антиоксидантной функции, в крови пациентов с диагнозом “депрессия” могут служить биомаркером их возможного ответа на терапию антидепрессантами (чем выше уровень воспалительных цитокинов и чем ниже показатель антиоксидантной функции, тем, с определенной вероятностью, хуже будет ответ на терапию).

НУТРИЦИОЛОГИЧЕСКИЕ ВМЕШАТЕЛЬСТВА, РЕКОМЕНДУЕМЫЕ ДЛЯ КОРРЕКЦИИ МИТОХОНДРИАЛЬНОЙ ДИСФУНКЦИИ

Нутрициологические вмешательства для коррекции митохондриальной дисфункции включают в себя такие биодобавки, как креатин и коэнзим Q10, а также кетогенную диету.(1) Одним из направлений нутрициологического вмешательства при депрессии является дополнительное обеспечение организма антиоксидантами. (3)

У пациентов с депрессией, по сравнению со здоровыми людьми, снижен уровень витаминов А, С и Е в крови. Эксперимент с добавлением этих витаминов в рацион пациентов привел к снижению показателей депрессии по шкале HAM-D. Также хорошие результаты показало добавление в рацион антиоксиданта N-ацетилцистеина. Другие вещества, проходящие сейчас клинические исследования — это коэнзим Q10, куркумин и карнозин. (4)
На нутрициологической коррекции митохондриальной функции построен т.наз. “протокол д-ра Терри Валс”, проходящий сейчас различные клинические исследования.

(1) Haddad, D., & Nakamura, K. (2015). Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson’s disease. FEBS letters, 589(24 Pt A), 3702–3713. doi:10.1016/j.febslet.2015.10.021

(2) Bansal, Y., & Kuhad, A. (2016). Mitochondrial Dysfunction in Depression. Current neuropharmacology, 14(6), 610–618. doi:10.2174/1570159×14666160229114755

(3) Allen, J., Romay-Tallon, R., Brymer, K. J., Caruncho, H. J., & Kalynchuk, L. E. (2018). Mitochondria and Mood: Mitochondrial Dysfunction as a Key Player in the Manifestation of Depression. Frontiers in neuroscience, 12, 386. doi:10.3389/fnins.2018.00386

(4) Caruso, G., Benatti, C., Blom, J.M.C., Caraci, F., Taschedda, F. (2019). The Many Faces of Mitochondrial Dysfunction in Depression: From Pathology to Treatment. Front. Pharmacol., 10 September 2019