Что еще известно о нейроиммунологии биполярного расстройства? Что такое кинурениновый путь метаболизма триптофана?

Сегодня читала три статьи про нейроиммунологию биполярного расстройства, опубликованные в разных журналах в 2019-2020 году. Совершенно друг другу не противоречат ? (…было бы странно, если бы противоречили).

Вот основные тезисы.

При БАР выявляются:

 ⁃ дисфункция иммунной системы, в том числе повышенный уровень воспалительных цитокинов (как в маниакальной, так и в депрессивной фазе заболевания); чем выше уровень воспалительных цитокинов, тем хуже ответ на лечение нормотимиками при БАР и антидепрессантами при униполярной депрессии; (ну, что воспалительные цитокины вызывают депрессивные состояния, известно всем, у кого когда-либо что-то сильно воспалялось; а сейчас после знакомства с понятием “цитокинового шторма” это вообще мэйнстримное знание, насколько можно судить); но тут важен кинурениновый путь метаболизма триптофана, см.ниже;

 ⁃ повышенный уровень С-реактивного белка, особенно в маниакальной фазе; 

 ⁃ повышенное количество лейкоцитов;

 ⁃ повышенное количество нейтрофилов;

 ⁃ гиперактивность Т-лимфоцитов;

 ⁃ постоянная или периодическая повышенная проницаемость гематоэнцефалического барьера, которая может быть вызвана избыточной активацией клеток глии;

 ⁃ нарушения миелинизации нейронов, связанные, вероятно, с нарушением активности олигодендроцитов;

 ⁃ значительное количество локусов метилирования ДНК (это один из механизмов того, как наша биография становится биологией (причем не только нашей, но и потомков));

 ⁃ окислительный стресс и митохондриальная дисфункция, в частности, нарушен процесс “отбраковки” поврежденных участков митохондрий;

 ⁃ недостаточность трофических факторов ЦНС, при этом выявляется характерный для БАР полиморфизм гена, отвечающего за мозговой трофический фактор (BDNF);

 ⁃ нарушение чувствительности оси гипоталамус-гипофиз-надпочечники, избыточная секреция кортизола, уменьшение количества рецепторов к глюкокортикодам; при этом тут заметны колебания в зависимости от фазы болезни;

 ⁃ сбои/ сдвиги циркадианного ритма, связанные с нарушением секреции мелатонина; они, в свою очередь, способствуют “разбалансировке” иммунной системы и нарушению чувствительности оси гипоталамус-гипофиз-надпочечники;

 ⁃ в некоторых случаях БАР —  избыточное количество жировой ткани (особенно в области живота), которое само по себе является источником воспалительных цитокинов; при этом и гиподинамия в депрессивной фазе, и нарушение регуляции голода/насыщения при избыточном количестве кортизола, и представления о том, что мозг питается только глюкозой, способствуют избыточному поступлению углеводов и тем самым накоплению жировой ткани;

 ⁃ ускорение биологического старения.

Отдельное внимание уделяется кинурениновому пути метаболизма триптофана. В присутствии воспалительных цитокинов активируется фермент индоламин-2,3-диоксигеназа, преобразующий триптофан не в серотонин, а в кинуренин. Количество кинуренина положительно коррелирует с интенсивностью симптомов депрессии (как униполярной, так и депрессивной фазы БАР). 

Далее в клетках глии кинуренин превращается в астроцитах в кинуреновую кислоту, а в клетках микроглии — в гидроксикинуренин и хинолиновую кислоту (которые способствуют активации рецепторов в клеточной мембране, которые закачивают в клетку избыточное количество кальция. Из-за этого, в частности, в клетках мозга нарушается функция митохондрий, производится избыточное количество свободных радикалов и синтезируются воспалительные цитокины. Кинуреновая кислота в какой-то степени выступает как нейропротектор, но когда ее слишком много, это может сопровождаться психотическими симптомами.

Ну и, соответственно, когда триптофан преобразован в кинуренин, на синтез серотонина и далее мелатонина его не хватает. Но если просто добавить триптофана, толку мало, т.е. будет больше кинуренина. 

Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, et al. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. Braz J Psychiatry. 2020;42:536-551. http://dx.doi.org/10.1590/1516-4446-2019-0732

Benedetti, F., Aggio, V., Pratesi, M. L., Greco, G., & Furlan, R. (2020). Neuroinflammation in Bipolar Depression. Frontiers in psychiatry, 11, 71. https://doi.org/10.3389/fpsyt.2020.00071

Niu, Z., Yang, L., Wu, X., Zhu, Y., Chen, J., & Fang, Y. (2019). The Relationship Between Neuroimmunity and Bipolar Disorder: Mechanism and Translational Application. Neuroscience bulletin, 35(4), 595–607. https://doi.org/10.1007/s12264-019-00403-7

Что сейчас пишут про связь шизофрении и аутоиммунных заболеваний?

В главе про шизофрению в книге “Вскрытие мозга. Нейробиология психических расстройств” мельком было упомянуто, что когда-то шизофрению считали аутоиммунным расстройством (с аутоантителами к тканям мозга), но потом оставили эту гипотезу в стороне, переключившись на дофаминовую гипотезу. 

Мне стало интересно, а что сейчас пишут про аутоиммунность и шизофрению (особенно в свете того, что гипотеза дисбаланса нейротрансмиттеров объясняет далеко не все). Пошла рыть Пабмед, и вот что нарыла:

Впервые гипотеза об аутоиммунной природе шизофрении была выдвинута Германом Леман-Фациусом в 1930-е годы. В 1950-1960 годы было обнаружено, что целиакия и шизофрения часто оказываются коморбидны друг другу. В датском и тайваньском популяционных исследованиях, опубликованных в 2010-х годах, было показано, что у людей с аутоиммунными заболеваниями чаще возникают психозы, чем у людей без аутоиммунных заболеваний; верно и обратное: у людей с психозами чаще обнаруживались аутоиммунные заболевания, чем у людей без психозов. 

В крови и спинномозговой жидкости людей, страдающих от психотических расстройств, обнаруживается больше воспалительных цитокинов (и их концентрация оказывается еще выше во время обострения). Люди, у которых повышен уровень воспаления, хуже реагируют на лечение антипсихотиками; но зато они лучше себя чувствуют при лечении противовоспалительными. 

Связь целиакии, нецелиакийной чувствительности к глютену и белкам пшеницы в целом привела к рекомендациям безглютеновой диеты для людей с шизофренией, и некоторой доле пациентов на такой диете становится лучше. Авторы статьи обращают внимание на то, что если у человека уже диагностирован психоз, его могут недообследовать в связи с соматическими жалобами, и, соответственно, целиакия (типичная и атипичная) могут быть не диагностированы. Также было показано, что аутоиммунные заболевания опорно-двигательного аппарата тоже “упускаются из вида”, если первым диагностируется психоз. 

В одном немецком исследовании было обнаружено, что среди 100 пациентов с шизофреноподобным психическим расстройством у 19 были аутоантитела к тканям щитовидной железы. 

Отдельно идет аутоиммунный энцефалит, который вообще трудно диагностируется, если не брать пробу спинномозговой жидкости, и часто может выглядеть со стороны именно как психоз. 

Также то, что выглядит как психоз, может оказаться энцефалопатией в результате аутоиммунного гепатита. 

Было показано, что одним из факторов риска возникновения психотических расстройств является бактериальная или вирусная инфекция (например, herpes simplex).

Было показано, что проницаемость гематоэнцефалического барьера у пациентов с шизофренией выше, чем у здоровых. 

У пациентов с шизофренией часто параллельно есть воспалительные заболевания ЖКТ (гастрит, энтерит, колит). У них отличается состав микробиома, и степень отличия (от состава микробиома здоровых людей) коррелирует с интенсивностью симптомов. У людей с шизофренией повышена проницаемость кишечного эпителия. 

В некоторых случаях шизофрении обнаруживаются аутоантитела к митохондриям. 

Удивительным образом, у тех, кто болен анкилозирующим спондилитом (болезнью Бехтерева) или ревматоидным артритом, шизофрения возникает реже, чем у тех, у кого нет этих заболеваний. Каков механизм этого, науке не известно. 

У женщин, страдающих психотическими расстройствами, обострения чаще происходят в предменструальной фазе цикла, т.е. перепады уровня гормонов и функция печени имеют к психозу непосредственное отношение. 

Популяционные исследования показывают, что люди, больные шизофренией, чаще едят более “воспалительную” еду, чем здоровые.

Исследований эффектов иммуномодуляции при шизофрении пока нет, в руководствах пишут, что врач должен как можно подробнее изучить клиническую картину, симптомы и результаты анализов, и решать в каждом конкретном случае, перевешивает ли возможная польза возможные риски. 

Про ЭЭГ и кальциевые каналы тоже интересное видела, но это надо отдельно под другим соусом подавать ?

Jeppesen, R., & Benros, M. E. (2019). Autoimmune Diseases and Psychotic Disorders. Frontiers in psychiatry, 10, 131. https://doi.org/10.3389/fpsyt.2019.00131

Benros ME, Mortensen PB. Role of Infection, Autoimmunity, Atopic Disorders, and the Immune System in Schizophrenia: Evidence from Epidemiological and Genetic Studies. Curr Top Behav Neurosci. 2020;44:141-159. doi: 10.1007/7854_2019_93. PMID: 30895532.

Cullen, A. E., Holmes, S., Pollak, T. A., Blackman, G., Joyce, D. W., Kempton, M. J., Murray, R. M., McGuire, P., & Mondelli, V. (2019). Associations Between Non-neurological Autoimmune Disorders and Psychosis: A Meta-analysis. Biological psychiatry, 85(1), 35–48. https://doi.org/10.1016/j.biopsych.2018.06.016

Nakagami, Y., Sugihara, G., Nakashima, N., Hazama, M., Son, S., Ma, S., Matsumoto, R., Murai, T., Ikeda, A., & Murakami, K. (2020). Anti-PDHA1 antibody is detected in a subset of patients with schizophrenia. Scientific reports, 10(1), 7906. https://doi.org/10.1038/s41598-020-63776-0

Reilly, T. J., Sagnay de la Bastida, V. C., Joyce, D. W., Cullen, A. E., & McGuire, P. (2020). Exacerbation of Psychosis During the Perimenstrual Phase of the Menstrual Cycle: Systematic Review and Meta-analysis. Schizophrenia bulletin, 46(1), 78–90. https://doi.org/10.1093/schbul/sbz030

Cha, H. Y., & Yang, S. J. (2020). Anti-Inflammatory Diets and Schizophrenia. Clinical nutrition research, 9(4), 241–257. https://doi.org/10.7762/cnr.2020.9.4.241

В 2020 году вышел сборник cтатей на английском “Нейровоспаление и шизофрения”

https://link.springer.com/book/10.1007/978-3-030-39141-6#about

Что пишут Касьянов и Филиппов про нейробиологию шизофрении?

“Тема мозга не раскрыта” ? это был самый часто встречающийся комментарий ко вчерашнему посту про “карту исцеления”, собранную по книгам Донны Джексон Наказавы и Бессела ван дер Колка. 

Совершенно согласна. Мозг — дело настолько сложное и тонкое, что, не будучи, собственно, нейроученым, подходить к нему хочется с осторожностью. Но внимательно читать и думать отсутствие специализации нам не запретит ? 

Поэтому сегодня мои загребущие лапы потянулись к книге “Вскрытие мозга. Нейробиология психических расстройств” (авторы Е.Касьянов и Д.Филиппов). 

В первой главе они с места в карьер берутся за самое “страшное и непонятное”: шизофрению. Я прожила довольно много лет с человеком с этим диагнозом, и я до сих пор вздрагиваю при воспоминаниях о том, что такое “острый психоз”. И при воспоминаниях о том, как я пыталась разобраться в том, какова моя роль в возникновении обострений, тоже вздрагиваю и аж дышать перестаю. 

Кроме этого человека, у меня было еще несколько знакомых с похожими симптомами, примерно поровну “с диагнозом” и “без диагноза”, и примерно поровну “адаптивных” и “дезадаптивных”. Если иметь в виду, что в среднем распространенность шизофрении в человеческой популяции составляет 1%, то не так-то и много людей, которых я могу наблюдать достаточно близко, чтобы заметить сопутствующие проявления. 

Что пишут Касьянов и Филиппов о шизофрении? Они описывают историю взглядов психиатрии, с конца 19-го века до начала 21-го, на этот диагноз. 

Вкратце:

 ⁃ психотическое состояние бывает много от чего, включая инсульт и менингит различной этиологии;

 ⁃ сама по себе “шизофрения” — это “диагноз-зонтик”, т.е. одним названием обозначают разные заболевания с похожими проявлениями (в лучшем случае, в худшем — это “диагноз-помойка”, куда собирается все то, что не могли отнести к какому-то другому заболеванию);

 ⁃ как и все психические расстройства, шизофрения имеет биопсихосоциальную природу, но при этом генетические и близнецовые исследования показывают, что генетическая предрасположенность определяет вероятность развития болезни на 80% (т.е. “бочка” заполнена на 80%, а средовые влияния /“вливания” в развитии симптомов составляют 20%); 

 ⁃ что-то там явно отличается (от структуры мозга здоровых людей) в цитоархитектуре, расположении нейронов и их связи друг с другом;

 ⁃ что-то отличается и в работе систем нейромедиаторов (дофамина, глютамата, серотонина);

 ⁃ есть больше 100 генов, отвечающих за риск развития шизофрении, но они отвечают не только за это; они “вкладываются” в развитие и других психических нарушений, а также некоторые из них отвечают за некоторые аспекты работы иммунной системы и кальциевых каналов. 

Чего мне не хватило в этой главе, т.е. какие у меня остались вопросы, ответы на которые придется искать в других местах.

 1. А как же глия? Вообще ничего про глию толкового не написано, равно как и про работу глимфатической системы. Понятно, что глимфатическая система — это “свежачок”, может еще не быть достаточного количества исследований. Но дико интересно. Потому что на уровне бытового наблюдения за человеком с психотическим расстройством: да, токсическая нагрузка на мозг совершенно точно связана с тяжестью состояния. 

 2. А как же нейровоспаление? Тоже ничего не написано тут, а было бы интересно. 

 3. А как же проницаемость барьерных эпителиев? Хотелось бы знать, как у людей с шизофренией обстоят дела с этим. 

 4. А инсулинорезистентность клеток мозга? 

 5. А микробиом? Есть ли какие-то отличия микробиома?

 6. А пищевые дефициты? Оказывают ли они какое-то влияние? 

 7. А как насчет синхронизации ритмов электрической активности мозга? Как с этим при шизофрении? 

 8. Так что с кальциевыми каналами-то при шизофрении?

Потому что, ясное дело, вопрос “как сделать так, чтобы человек с определенными врожденными характеристиками не выходил в тяжелое дезадаптивное состояние”. Что там в этих 20% средовых влияний, на что можно хоть как-то повлиять, потому что там каждая кроха ценна. И не только для того, чтобы уменьшить страдание самого человека, но и для того, чтобы помочь тем, кто с ним живет (тут у меня как болело за себя, так и за других болит очень). 

Может ли пищевой кетоз быть способом уменьшить нейровоспаление? (пересказ обзора исследований)

Вчера я нашла статью, в которой мне захотелось покопаться подробнее. Она опубликована в 2020 г. в журнале “Европейская психиатрия” (официальном журнале Европейской психиатрической ассоциации) и называется “Пищевой кетоз как вмешательство, способное уменьшить астроглиоз: перспективы лечения нейродегенеративных заболеваний и нейропсихиатрических синдромов”. 

Это большой обзор биологических механизмов воздействия пищевого кетоза на мозг (при подготовке обзора использованы 347 источников).

Что известно:

Пищевой кетоз достигается разными способами, в частности

 ⁃ добавлением в рацион среднецепочечных жирных кислот

 ⁃ добавлением в рацион кокосового масла

 ⁃ радикальным снижением количества углеводов

 ⁃ сужением “пищевого окна” и голоданием

 ⁃ кетогенная диета стимулирует мозговой трофический фактор (BDNF)

 ⁃ кетогенная диета часто помогает при эпилепсии (причем как детям, так и взрослым)

 ⁃ есть положительные результаты при применении кетогенной диеты на ранних стадиях деменции, в т.ч. при болезни Альцгеймера

 ⁃ есть указания на возможную пользу кетогенной диеты при болезни Паркинсона, шизофрении, биполярном расстройстве и расстройствах аутистического спектра

На пациентах с клинической депрессией (MDD) исследований нет, но авторы предполагают, что снижение уровня воспаления и повышение секреции BDNF за счет диеты будет иметь антидепрессивный эффект (по аналогии с механизмами работы антидепрессантов). 

Как именно работает пищевой кетоз в мозге:

 ⁃ Кетоновые тела представляют собой эффективно используемое топливо для клеток, в том числе для клеток мозга, что особенно важно, когда в клетках формируется инсулинорезистентность и нарушается метаболизм глюкозы (что показано при болезни Альцгеймера, БАС, болезни Паркинсона, хорее Хантингтона, шизофрении, биполярном расстройстве и депрессии).

 ⁃ Кетоновые тела синтезируются в печени и экспортируются во все органы, нуждающиеся в энергии. При повышении концентрации кетоновых тел в крови, они проходят через гематоэнцефалический барьер при помощи специальных транспортеров, синтезируемых клетками этого барьерного эпителия. При длительном пищевом кетозе синтез этих транспортеров увеличивается в 10 раз по сравнению с состоянием вне кетоза, и кетоновые тела составляют 60-70% источников энергии мозга. 

 ⁃ Пищевой кетоз снижает окислительный стресс, снижает воспаление и улучшает функции митохондрий. Эта триада симптомов нарушает нормальное взаимодействие между нейронами, астроцитами и клетками микроглии. Нарушение митохондриальной функции астроцитов и клеток микроглии особенно пагубно для здоровья мозга. 

 ⁃ Избыточное количество свободных радикалов в мозге индуцирует гиперреактивное дисфункциональное состояние астроцитов (астроглиоз). Именно развитие этого состояния является поворотным моментом, запускающим нейропсихиатрические синдромы и нейродегенеративные заболевания. Поэтому астроциты сейчас оказываются основной мишенью терапевтического воздействия.

 ⁃ При кетозе повышается количество АТФ в мозге, количество митохондрий и продуктивность митохондрий (как в нейронах, так и в клетках глии), снижается количество свободных радикалов и укрепляется защита клеток эндогенными антиоксидантами (и в астроцитах это происходит интенсивнее, чем в нейронах); снижается уровень нейровоспаления; лучше поддерживается гомеостаз мозга.

В понятии “гомеостаз мозга” выделяются четыре уровня:

 ⁃ метаболический гомеостаз (формирование контактов между сосудами (кровеносными и лимфатическими) и клетками ЦНС; функционирование гематоэнцефалического барьера; регуляция кровотока и снабжения мозга кислородом; метаболическая поддержка нейронов);

 ⁃ нейронно-сетевой гомеостаз (развитие нейронных сетей и цепей; синаптическая пластичность; синаптогенез; обрезка ненужных синапсов);

 ⁃ молекулярный гомеостаз (вода, калий, кальций, аденозин, нейротрансмиттеры (в первую очередь глютамат и ГАМК));

 ⁃ системный гомеостаз (сон/бодрствование; оценка состояния системы рецепторами к CO2, pH, Na+, глюкозе).

Астроглиоз — гиперреактивное состояние астроцитов, развивающееся в ответ на даже небольшие отклонения биохимических характеристик мозга от гомеостаза. В частности, астроглиоз провоцируется воспалительными цитокинами, большим количеством свободных радикалов и липополисахаридами (элементами клеточной стенки патогенных бактерий, проникающими в кровоток из кишечника). При астроглиозе астроциты не могут полноценно выполнять свои функции (обеспечение нейронов кислородом и питательными веществами, поддержание гомеостаза ионов, “уборка” продуктов метаболизма). Наиболее пагубным является изменение структуры астроцитов (меньше “ножек”/ протрузий, которыми астроцит соприкасается с сосудами и с нейронами); также при астроглиозе повышается проницаемость гематоэнцефалического барьера (что еще больше нарушает гомеостаз мозга), и нарушается работа цикла преобразования глютамата в глютамин (что умеют делать только астроциты; в результате возникает эксайтотоксичность из-за избытка глютамата в мозге). 

Кетоновые тела (а также антиоксиданты и полиненасыщенные жирные кислоты) нормализуют работу натрий-калиевых насосов в клеточных мембранах (базовый механизм транспорта веществ в клетку и из нее, а также поддержания разности потенциалов). 

Именно астроциты перерабатывают жирные кислоты в кетоновые тела, чтобы снабжать ими нейроны при малом поступлении глюкозы в мозг. Кетоновые тела ограничивают синтез глютамата в нейронах и астроцитах (это может еще происходить в результате изменения кишечного микробиома под воздействием кетогенной диеты). 

Изменение кишечного микробиома под воздействием кетогенной диеты влияет на количество эндогенных короткоцепочечных жирных кислот и на проницаемость кишечного эпителия (при снижении проницаемости кишечного эпителия уменьшается периферическое воспаление). Бета-гидроксибутират (наиболее часто встречающееся кетоновое тело) непосредственно оказывает противовоспалительное воздействие. 

Morris G, Maes M, Berk M, Carvalho AF, Puri BK (2020). Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. European Psychiatry, 63(1), e8, 1–21 https://doi.org/10.1192/j.eurpsy.2019.13

Что такое зонулин и как он связан с проницаемостью барьерных эпителиев?

В 2000 году Алессио Фазано и его коллеги на медицинском факультете университета Мэрилэнда открыли вещество, которое они назвали “зонулин”. Оно регулирует работу плотных соединений между клетками барьерных эпителиев в организме млекопитающих.

С тех пор было проведено много исследований, и в начале этого года А.Фазано опубликовал их обзор (1). Вот что он пишет:

То, будем ли мы здоровы или заболеем, определяется не только и не столько нашими генами, сколько взаимодействием нашего организма со средой. Это взаимодействие в существенной степени проходит на границе контакта между внутренней и внешней средой (это различные эпителии). Самая большая площадь соприкосновения со средой — у ворсинчатого эпителия в тонком кишечнике: если расправить ворсинки, его площадь составит около 200 кв.м. Различные вещества (питательные вещества из еды, метаболиты бактерий и т.п.) проходят сквозь барьерный эпителий тонкого кишечника, где их “оценивают на опасность” клетки иммунной системы. В случае нормальной проницаемости кишечного эпителия, плотные соединения между клетками эпителия не пропускают из просвета кишечника макромолекулы. Когда проницаемость эпителия нарушена (становится слишком большой), макромолекулы недопереваренных белков, а также вещества, синтезируемые бактериями, проходят из просвета кишечника во внутреннюю среду организма, и там вызывают иммунный ответ, в том числе запускается воспалительный каскад.

Зонулин управляет повышением проницаемости эпителия. Что вызывает синтез зонулинов в клетках эпителия тонкого кишечника? Пока идентифицированы два главных триггера: это большое количество бактериальных метаболитов и компонентов бактериальных клеточных оболочек (вообще в норме в тонком кишечнике бактерий должно быть довольно мало, в основном наш кишечный микробиом обитает в толстом кишечнике) и глютен. Зонулин работает так же, как холерный зот-токсин. Организм ошибочно принимает глютен за метаболит или компонент оболочки вредоносных бактерий, и “открывает ворота”, чтобы иммунные клетки могли выйти в просвет кишечника и там побороться с врагом. Но в “открытые ворота” при этом заходят все, кому не лень, потому что там никто не “проверяет документы”.  

Такая реакция (глютен запускает синтез зонулина, зонулин повышает проницаемость кишечного эпителия) происходит у всех, но не у всех это ведет к развитию хронических заболеваний. Нужна определенная предрасположенность иммунной системы (сочетание генетических и иных имеющихся средовых факторов) и отклонения в составе кишечного микробиома.  

Пациенты с целиакией давно являются важным источником информации о работе зонулина. При стимуляции глютеном, клетки кишечного эпителия пациентов с целиакией выделяют больше зонулина и в течение более длительного времени. Аналогичным образом работает нецелиакийная чувствительность к глютену (только при этом не возникают структурные изменения ворсинок кишечного эпителия и не развивается изъязвление).

В каких случаях мы обнаруживаем высокую концентрацию зонулина в плазме крови?

У людей с хроническими заболеваниями концентрация зонулина в плазме крови выше, чем у здоровых. У пожилых людей концентрация зонулина в плазме положительно коррелирует с концентрацией воспалительных цитокинов (фактора некроза опухоли-альфа и интерлейкина-6), и отрицательно коррелирует с мышечной силой и регулярной физической нагрузкой.

Важно, что высокая концентрация зонулина в плазме крови приводит к нарушению проницаемости всех барьерных эпителиев в организме, включая гематоэнцефалический барьер (ГЭБ). В частности, корреляция концентрации зонулина с проницаемостью ГЭБ была показана у людей, больных рассеянным склерозом (как в прогрессирующей форме, так и в форме, характеризующейся чередованием обострений и ремиссий).

Повышение концентрации зонулина в плазме предшествует развитию диабета первого типа (аутоиммунного) примерно в 50% случаев. На крысах из популяции, склонной к спонтанному развитию диабета первого типа, было показано, что прием лазаротида ацетата (антагониста зонулина) уменьшает вероятность развития заболевания. 

Концентрация зонулина в плазме крови повышена у людей, страдающих от

– болезни Крона

– язвенного колита

– синдрома раздраженной кишки (по типу доминирования диареи)

– болезни Бехтерева

– рассеянного склероза (см. выше)

– ожирения и сопутствующих синдромов и заболеваний (инсулинорезистентности, диабета 2 типа, жировой болезни печени)

– глиом

– рака печени

– аутизма с нарушением работы ЖКТ

– шизофрении с наличием дефекта

– клинической депрессии

– синдрома хронической усталости и фибромиалгии

(1) Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res. 2020 Jan 31;9:F1000 Faculty Rev-69. doi: 10.12688/f1000research.20510.1. PMID: 32051759; PMCID: PMC6996528.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996528/

Что такое глимфатическая система мозга?

Сегодня я добираю про глимфатическую систему. Вчера конспект книжки Донны Джексон Наказавы “Ангел и убийца” закончился на том, что в мозге есть лимфатическая система, и она не то же самое, что глимфатическая. Так что же такое глимфатическая система?

Это система пор и канальцев внутри мозга, действующая по принципу гидравлического насоса, а не диффузии, как предполагалось прежде. Она обеспечивает циркуляцию спинномозговой жидкости во взаимодействии с межклеточной жидкостью в мозге. Термин “глимфатическая система” ввела в 2013 г. датская исследовательница Майкен Недергор (Nedergaard). Глимфатическая система соприкасается с лимфатической системой мозга, позже описанной Луво. 

Анатомию ЦНС я учила в 1996 году, с тех пор наука шагнула далеко вперед. Поэтому сегодня я немного повторяю пройденное.

СПИННОМОЗГОВАЯ ЖИДКОСТЬ

В теле человека единовременно присутствует от 125 до 150 мл спинномозговой жидкости (СМЖ). Она представляет собой ультрафильтрат плазмы и постоянно порождается и всасывается. В целом, в зависимости от скорости этих процессов, в среднем СМЖ полностью обновляется за 7,5 часов. Взрослый человек в среднем генерирует от 400 до 600 мл СМЖ в день. СМЖ генерируется клетками оболочки мозга pia mater в желудочках мозга. Это специализированные клетки эпителия, окружающие капилляры; они соединены плотными соединениями (tight junctions), что создает барьерный эпителий между кровью и СМЖ. Часть веществ проходят через эти плотные соединения, часть активно транспортируются этими клетками эпителия в СМЖ или прямо в них синтезируются.  Барьера между СМЖ и межклеточным пространством мозга не обнаружено.  

По сравнению с плазмой, в СМЖ выше концентрация натрия, хлоридов и магния, и меньше концентрация калия и кальция. Клеток в СМЖ крайне мало. Состав СМЖ поддерживается постоянным, независимо от изменений в составе плазмы крови. Помимо того, что СМЖ поддерживает мозг “на плаву” и обеспечивает амортизацию при ударах мозга о череп, она еще обеспечивает стабильность состава межклеточной жидкости в мозге.  

После того, как СМЖ омывает спинной и головной мозг, она всасывается обратно в кровоток через структуры паутинной оболочки, ворсинчатые выросты, которые называются “грануляции паутинной оболочки”. Есть гипотеза, что замедление процессов генерации и всасывания СМЖ способствует накоплению токсинов в мозге и в связи с этим — нейровоспалению и нейродегенеративным заболеваниям.  

СМЖ обмывает мозг, собирает и выводит накопившийся в мозге “мусор” (избыток нейротрансмиттеров, продукты окисления, гликированные протеины, бактерии и вирусы). 

Раньше считалось, что СМЖ двигается всегда в одном направлении, “от головы к хвосту”. Также считалось, что движение СМЖ от места генерации к месту всасывания обеспечивается ритмической пульсацией артерий; меньшее влияние оказывает ритм дыхания, поза, уровень физической активности человека и время суток.  

Всасывание СМЖ обратно в кровоток происходит в разных точках центральной нервной системы, в венозных синусах. Ворсинчатые выросты паутинной оболочки просунуты сквозь твердую оболочку (dura mater) в просвет венозных синусов, и там за счет разницы давления происходит всасывание СМЖ обратно в кровоток. 

Дренаж СМЖ может происходить в лимфатическую систему через носовую решетчатую кость и у корешков спинномозговых нервов.  

ВОЛНЫ ВО ВРЕМЯ МЕДЛЕННОГО СНА

В 2019 г. Лаура Льюис и ее коллеги опубликовали исследование (1), где рассказывается о том, как именно СМЖ во сне омывает мозг. Во время фазы медленного (глубокого) сна СМЖ двигается по мозгу большими медленными волнами — в областях, где доминируют медленные мозговые ритмы. Группы нейронов переставали активно передавать сигнал, в этих областях уменьшался приток крови, и в эти области вливалась СМЖ. 

ДРЕНАЖ ИЗ ГЛИМФАТИЧЕСКОЙ СИСТЕМЫ

Что мешает дренажу из глимфатической системы? Гиподинамия, обезвоживание, неправильное питание, воспаление и, главное, отсутствие или недостаточность восстанавливающего сна. Именно во время сна глимфатическая система работает наиболее активно.  

Что можно делать, чтобы глимфатическая система работала лучше?

— Пить достаточно воды 

— Спать 

— Активно двигаться 

— Оптимизировать функции митохондрий 

— Получать достаточно магния, антиоксидантов и хороших жиров 

— Восстанавливать нормальную проницаемость барьерных эпителиев 

— Заботиться о выведении токсинов из организма в целом 

Ужасно интересно это все и напрямую, как мне кажется, еще связано с медитацией, йогой, остеопатией, массажем и нейрообратной связью. 

(1) Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep

BY NINA E. FULTZ, GIORGIO BONMASSAR, KAWIN SETSOMPOP, ROBERT A. STICKGOLD, BRUCE R. ROSEN, JONATHAN R. POLIMENI, LAURA D. LEWIS

SCIENCE01 NOV 2019 : 628-631

Что пишет Донна Джексон Наказава про микроглию и нейровоспаление?

Сегодня я перечитываю кусок из книги Донны Джексон Наказавы “Ангел и убийца”,  про микроглию и нейровоспаление. Это один из ответов на вопрос “почему у нас возникают коморбидные психические расстройства и когнитивные нарушения, когда мы болеем — в том числе аутоиммунными заболеваниями или нынешним вирусом”.

МИКРОГЛИЯ 

Впервые микроглию обнаружил, счел клетками нервной системы, описал и дал ей название Пио дель Рио Ортега, ученик Сантьяго Рамон-и-Кахаля. До недавнего времени считалось, что клетки микроглии в основном пассивны и не выполняют в мозге никаких особо важных функций, кроме реакций на повреждения и “уборки за нейронами” (хотя клеток микроглии много — они составляют больше 10% клеток мозга). Все изменилось в 2012 году, когда удалось увидеть бурную активность этих клеток in vivo, и в одном из меняющих парадигму научных исследований было показано, что клетки микроглии могут как повреждать нейроны и синапсы между ними, так и исцелять их и способствовать их росту. Будучи в чем-то функционально аналогичными лейкоцитам, клетки микроглии — основное, что управляет здоровьем мозга, и соответственно, оказывает огромное влияние на психические заболевания. Клетки микроглии непосредственно и опосредованно взаимодействуют с иммунной системой организма — мозг не является “органом, свободным от иммунного воздействия”, скорее, наоборот. Иммунные изменения в мозге могут проявляться, в частности, в виде психических и нейродегенеративных заболеваний. Эти иммунные изменения могут оказывать влияние даже тогда, когда в организме за пределами мозга не выявляются конкретные заболевания. Новое понимание роли микроглии задает нам совсем новый ракурс для рассмотрения психических и нейродегенеративных заболеваний и способов их лечения.  

Донна Джексон Наказава пишет: “Что, если мы будем спрашивать себя не “Почему я так себя чувствую?” или “Почему же я не справляюсь?”, или “Что же я все забываю-то?”, – а “Почему у меня микроглия синапсы обгрызла, и что я могу сделать, чтобы остановить и развернуть этот процесс?”” 

Микроглия достаточно рано дифференцируется в ходе эмбрионального развития — из той же группы клеток, которая порождает также лейкоциты и лимфоциты иммунной системы, и на девятый день (…уточнение: скорее всего, имеется в виду девятая неделя, но в книге вот так) гестации мигрирует в мозг, где и остается. То есть микроглия — это живущие внутри мозга клетки иммунной системы. Клетки микроглии весьма активны. Когда организму достаточно хорошо, они ощупывают своими отростками нейроны, как бы проверяя, не нуждаются ли те в чем-нибудь. Они выделяют вещества, питающие и поддерживающие нейроны и стимулирующие нейрогенез (порождение новых нейронов) и синаптогенез (порождение новых синапсов). Клетки микроглии способствуют миелинизации отростков нейронов. Они отслеживают малейшие изменения и нарушения в функционировании нейронов и обеспечивают корректирующее изменение условий.  

“ОБРЕЗКА” НЕЙРОНОВ (PRUNING) КЛЕТКАМИ МИКРОГЛИИ И ПСИХИЧЕСКИЕ ЗАБОЛЕВАНИЯ 

Особенно важная роль микроглии состоит в т.наз. “обрезке” нейронов (pruning). В процессе развития нейроны создают избыточное количество синапсов, но для того, чтобы сигнал проходил по нейронам именно туда, куда надо, лишние синапсы необходимо убирать. Исследователи Бен Баррес и Бет Стивенс (2007) обнаружили, что лишние синапсы маркируются иммунными молекулами комплемента, и впоследствии клетки микроглии “откусывают” помеченные синапсы (так же, как иммунные клетки “проглатывают” маркированные комплементом чужеродные клетки, проникающие в организм).  

Сейчас существует гипотеза, что в основе множества психических и нейродегенеративных заболеваний лежит нарушение активности микроглии, вызывающее недостаточную или избыточную “обрезку” нейронов, а также изменение функции “ухода за нейронами” (недостаточное питание нейронов и недостаточная уборка отходов клеточного метаболизма). В частности, заметное уменьшение объема гиппокампа при депрессии, тревоге, обсессивно-компульсивном расстройстве, аутизме и болезни Альцгеймера объясняется именно избыточной “обрезкой” нейронов  и поглощением новорожденных нейронов “сбившейся с пути” и “потерявшей настройки” микроглией.  

На мышах с болезнью Альцгеймера было показано, что избыточная “обрезка” синапсов возникает достаточно рано в ходе заболевания, задолго до накопления амилоидных бляшек, и когнитивные изменения, связанные с болезнью, обусловлены в первую очередь именно избыточной “обрезкой” синапсов. В случаях болезни Паркинсона степень активности микроглии связана с интенсивностью прогрессирования заболевания.  У людей с аутизмом обнаружена повышенная активация микроглии, преимущественно в мозжечке.  

ЧТО ПЕРЕКЛЮЧАЕТ МИКРОГЛИЮ ИЗ “АНГЕЛА” В “УБИЙЦУ”? 

Что же так влияет на микроглию? Что переключает ее из модуса “выделяем нейрозащитные факторы”  в модус “выделяем воспалительные цитокины и запускаем процесс хронического воспаления в мозге” (даже тогда, когда изначального стрессора уже давно и в помине нет)? Исследовательница Маргарет Маккарти обнаружила, что ранний детский опыт (колебания уровня гормонов, инфекции, воспаление) за счет эпигенетической модификации влияет на то, как микроглия будет впоследствии реагировать на травмы, стрессы и инфекции.  

Сейчас заболеваний, связанных с избыточной активностью микроглии, заметно больше, чем несколько десятилетий тому назад, и дело не только в том, что усовершенствовалась диагностика, но и в том, что сильно изменилась среда (потому что за такой короткий срок генетическая предрасположенность к тому или иному заболеванию не могла измениться). Изменилась еда, химическая промышленность выпустила в окружающую среду десятки тысяч прежде не существовавших и чуждых для нашего организма соединений, количество социального стресса заметно возросло (в том числе после появления Интернета, смартфонов и социальных сетей). В результате иммунная система слишком часто оказывается “на взводе” и от этого запутывается, и, в частности, перестает отличать своих от чужих (так возникают аутоиммунные заболевания), а также запускает процесс хронического нейровоспаления.  

ВОСПАЛЕНИЕ И НЕЙРОВОСПАЛЕНИЕ 

Была показана корреляция количества воспалительных цитокинов с выраженностью психиатрических симптомов. Резкое повышение воспалительных цитокинов может использоваться как предиктор повышенного риска самоубийства. Ухудшение депрессивной симптоматики сопровождается нейровоспалением, связанным с активацией микроглии. В других органах и тканях, вне мозга, воспаление сопровождается отеком, покраснением и повышением температуры. Мозг очень редко воспаляется именно так (и когда он это делает, приходится снимать часть черепа, чтобы ослабить давление на мозг); чаще всего нейровоспаление проявляется именно в изменении состояния и функции микроглии. 

Как связано повышенное количество воспалительных цитокинов, активация микроглии, нейровоспаление и психические заболевания?  

В исследовании на мышах, опубликованном в 2017 году, было показано, что 5 недель непредсказуемого стресса запускает у мышей патологическую активацию микроглии, что приводит к уменьшению объема гиппокампа, и вскоре проявляется депрессоподобное поведение. У людей подобный процесс, скорее всего, займет больше времени.  

Эволюционно депрессивное поведение в ответ на воспаление, вызванное инфекционными заболеваниями, очень полезно — нежелание двигаться, общаться и что-то делать экономит энергию организма, позволяя направлять ее на выздоровление и регенерацию, и одновременно ограничивает распространение инфекции в сообществе (и вероятность заразиться вторичной инфекцией).  

Повышенный уровень воспаления в организме, вызванный, например, аутоиммунными хроническими заболеваниями, такими, как системная красная волчанка, ревматоидный артрит, рассеянный склероз, тиреоидит Хашимото, болезнь Крона и многие другие, и хроническими воспалительными синдромами, например, синдромом раздраженной кишки или периодонтитом, вызывает активацию микроглии и нейровоспаление. Именно этим, а не только болевым синдромом и ограничениями, оказываются в существенной степени обусловлены когнитивные и аффективные нарушения, часто сопровождающие эти болезни. Нейровоспаление и связанные с этим нарушения внимания и памяти могут проявляться и после достаточно тяжело протекающих инфекционных заболеваний. Что это значит? Что границы между психическими и соматическими заболеваниями, на самом деле, не существует. И границы между разными направлениями в медицине тоже условны; верен интегративный подход.  

Большая часть пациентов, страдающих от психических заболеваний, понятия не имеет, что это как-то связано с иммунной системой. Потому что они пока еще не знают о том, что в мозге полно иммунных клеток. Это неведение не дает им рассматривать другие пути лечения.  

В 2015 году Йонатан Кипнис и Антуан Луво обнаружили в мозге мышей лимфатические сосуды и подтвердили, что мозг непосредственно сообщается с иммунной системой организма, а не стопроцентно изолирован от нее гематоэнцефалическим барьером (ГЭБ), как предполагалось ранее. В следующем году наличие лимфатических сосудов было подтверждено и в человеческом мозге. Иммунные клетки в лимфатических сосудах выделяют воспалительные цитокины, которые могут активировать микроглию. Лимфатические сосуды мозга могут участвовать в процессах очищения мозга от отходов клеточного метаболизма. Это не “глимфатическая” система внутри мозга, по которой циркулирует спинно-мозговая жидкость, а находящиеся в пазухах мозговых оболочек лимфатические сосуды.  

Какие знания о здоровом и/или лечебном питании достаточно общие, а какие — специфические?

В первой главе книги про питание при психических заболеваниях Ума Найду напоминает читателям про базовые знания о связи нервной и пищеварительной системы. (Хочется сказать: “Если здесь есть кто-то, кто считает, что они никак не связаны, пусть обоснует!”)

Что мне тут особенно интересно, это переход от общего-абстрактного “знания о” к индивидуальному-конкретному умению сделать. (У суфиев есть пословица “знать — это уметь делать”; мне кажется, это важный принцип.) Общее-абстрактное “знание о” есть у всех, кто еще помнит, чему его учили в школе. “Питание должно быть разнообразным и сбалансированным; в организм должны поступать белки, жиры, углеводы, клетчатка, витамины и минеральные вещества; вода — основной растворитель, ее должно быть достаточно”. Каждый школьник знает. (Равно как и про строение и функции желудочно-кишечного тракта.)

А вот с индивидуальным-конкретным уже другой вопрос. Я вообще затеяла разбираться с психонейроэндокриноиммунологией глубже, чем раньше, когда мне очень захотелось чем-то помочь другу, живущему с полутора десятками хронических заболеваний, в том числе с коморбидной депрессией и тревожностью. Душа держится преимущественно в упорстве, интеллектуальной одаренности и ненасыщаемой познавательной потребности, ответственности и любви к жизни; и вообще то, как человек живет в выданных ему обстоятельствах, вызывает огромное уважение. И, конечно, хочется понять, можно ли что-то сделать, чтобы стало легче; особенно в ситуации, когда врачи-специалисты мало контактируют друг с другом и не имеют возможности подробно расспросить, потому что пациентов много, а время не резиновое. 

В такой ситуации, конечно, много вопросов. И главный из них — как не навредить. Моя логика была такова: перерыть в Пабмеде и доступной литературе все, что я могу найти, касательно нефармакологических форм поддерживающей терапии по каждому из диагнозов, а также по каждому из них тщательно изучить противопоказания. Разобраться с взаимным влиянием фармакологических препаратов, их побочными эффектами и тем, как они взаимодействуют с разной едой (и кофе, нельзя же забыть про кофе). И исключив то, что противопоказано, и учтя рекомендации, из оставшегося собрать простой, полезный и непротиворечивый рацион, желательно еще так, чтобы человек с инвалидностью в хорошие дни мог сам себе готовить. В идеале еще понимать, что убирать и что добавлять, когда состояние выходит из баланса и начинается крен в ту или иную сторону. 

Вот такие два полюса. Посередине то, что знает не каждый школьник (по крайней мере, я 25 лет тому назад, будучи школьницей, побеждавшей на биологических олимпиадах, как-то не отфиксировала): 

например,

 ⁃ что хроническое воспаление — это зло, а также основа очень многих болезней, и что проявляться оно может в самых разных симптомах; 

 ⁃ что большая часть нашей иммунной системы находится в брюшной полости;

 ⁃ что в мозге есть своя иммунная система, которая тоже может устраивать воспаление; 

 ⁃ что гематоэнцефалический барьер не такой однозначно непроницаемый, как мы привыкли думать; 

 ⁃ что жировая ткань на животе человека, особенно если ее много, выступает как эндокринная железа и источник воспалительных цитокинов;

 ⁃ что в организме человека гораздо больше разнообразия бактериальной ДНК, чем собственно человеческой; 

 ⁃ что однояйцевые (идентичные) близнецы могут иметь разный микробиом, и от этого, скажем, один будет худой, а другой толстый; 

 ⁃ что важно не только то, что ты ешь, но и то, что и как ты из этого усваиваешь;

 ⁃ что многие вещества, регулирующие работу мозга, синтезируются бактериями в кишечнике;

 ⁃ что воспалительные цитокины влияют на пути синтеза разных важных веществ, в результате может получаться “не то”;

 ⁃ что мозг — это не только биохимический суп, но и электрическая симфония, и можно влиять непосредственно на его ритмы, а это будет влиять на весь организм. 

Посередине также — “оптимальный рацион условно-здорового человека”. 

(Интересно, в каких областях этого континуума — ваши текущие знания и ваш интерес к теме?)

Книга Умы Найду — несколько более специфична, ближе к полюсу “индивидуальное-конкретное”, чем вот это вот “посередине”. Она пишет про десять групп симптомов психических нарушений (депрессия, тревога, посттравматический стресс, СДВГ, ОКР, деменция, нарушения сна, шизофрения и биполярное расстройство (оба в одной главе), нарушения либидо). Завтра уже полезу в главу про депрессию.