От чего может повышаться уровень мочевой кислоты, а что его снижает?

Я понимаю, что вы уже про мочевую кислоту узнали больше, чем когда-либо хотели знать, но я ее пока не оставлю ? Сегодня в режиме обрывочных размышлений. 

Вопросы, которые у меня остались после нескольких последних дней, вот такие:

 1. Почему повышен/ повышается уровень мочевой кислоты? Что на это влияет? 

 2. Что можно сделать в домашних условиях, чтобы он держался себе более-менее стабильно в рамках нормы?

 3. Что еще, кроме аллопуринола, помогает снижать уровень мочевой кислоты, и как это работает?

Еще меня не отпускает история индивидуального случая, где пациентке с манией прописали пить 5-7 дней активированный уголь, и мания прошла. Мне очень интересно, что тут сработало. 

Что пока мне понятно:

 ⁃ Мочевая кислота — это конечный продукт катаболизма АТФ, помимо прочего. Если мы вдруг себе повысили производство АТФ, “разогнав” митохондрии (либо сменой “топлива”, либо добавлением недостающих веществ, либо и тем, и другим), то у нас и уровень мочевой кислоты возрастет, так? (тогда понятно, почему высокий уровень мочевой кислоты может быть маркером мании — АТФ производится туча, он стимулирует секрецию нейротрансмиттеров, и понеслась). 

 ⁃ На очень примитивном уровне обычно говорят: “мочевая кислота — это продукт метаболизма пуринов, ешьте меньше белков, содержащих пуриновые основания, и будет вам свобода от подагры”. Но вот тут я наблюдала за собой. Мне это сказали в свое время, и я придерживалась лакто-ово-вегетарианской диеты несколько лет. И что? Лучше не стало, стало в целом хуже. Потому что нет универсальных рекомендаций, а надо смотреть особенности индивидуального организма. Потому что у меня вот, например, непереносимость казеина, и если я буду есть молочные продукты, я сильно испорчусь. А если у меня будет белковое голодание, я испорчусь тоже. И как тогда? 

 ⁃ Концентрация мочевой кислоты в крови повышается, когда она хуже выводится с мочой. Это происходит по множеству разных причин, начиная от обезвоживания и нарушения генетических механизмов выведения/ обратного всасывания/ транспорта мочевой кислоты. Но меня тут интересует момент, что мочевая кислота хуже выводится, в частности, потому, что организм старается вывести что-то другое, что он полагает более токсичным, и мочевая кислота “конкурирует за выведение” с этим. В частности, это может быть D-изомер молочной кислоты или кетоновые тела. 

 ⁃ Про D-изомер молочной кислоты интересно вот что: он в организме человека производится в минимальных количествах, и может быть преобразован в пируват соответствующим ферментом. Но если в этом ферменте сбой (вот, например, израильские ученые исследовали семью, где у всех членов семьи был сбой в этом ферменте), то происходит накопление D-лактата; в высоких концентрациях он очень токсичен (для мозжечка, в частности), поэтому организм его будет всеми силами пытаться вывести. (Но если в организме дефицит витамина В1, получаться это будет значительно хуже.)

 ⁃ А еще D-изомер молочной кислоты производится бактериями в толстом кишечнике, причем вполне теми самыми пробиотиками, от которых много всем добра, в целом, и комменсалами тоже. И дальше из этого D-лактата делаются короткоцепочечные жирные кислоты, которые питают клетки кишечника, защищают их от рака и т.п., много хорошего. Но есть нюансы. В частности, если в толстый кишечник попадет непереваренная пища, содержащая сахара и крахмал, в достаточном количестве, бактерии накрутят из нее столько D-лактата, что часть его всосется через стенку кишечника прямо как есть. (И вот тут я думаю про даму, которой прописали от мании активированный уголь, и мне становится понятно, почему сработало: активированный уголь связал избыток D-лактата в кишечнике, всасывалось его меньше, почки сумели выводить не только его, но и мочевую кислоту.)

 ⁃ Поэтому понятно, что сработало, когда мне другой врач сказал: “фигня это, что при подагре не нужно есть белковую пищу; при подагре нужно сократить количество сахара, а особенно фруктозы”. И вот это как раз сработало на ура. Я наблюдаю у себя обострения подагры после ситуаций, когда “на старуху случилась проруха” и я употребила что-то сладкое в достаточном количестве. 

 ⁃ Когда количество мочевой кислоты таково, что она начинает осаждаться, она осаждается, в общем, везде, но в суставах и почках заметнее всего. Поэтому, когда пробовали лечить подагру не только аллопуринолом, но параллельно еще цитратом натрия (это растворимая соль, “ощелачиватель мочи”), уровень мочевой кислоты снижался быстрее, чем при монотерапии аллопуринолом; а у той подгруппы, у кого функция почек была хуже всего, она заметно улучшалась при этом. Это хорошо работает для людей с ожирением и метаболическим синдромом. 

 ⁃ Кстати, у людей с повышенным уровнем мочевой кислоты лимонная кислота с мочой выводится значительно меньше, чем у людей с нормальным уровнем мочевой кислоты; организм обратно всасывает лимонную кислоту, возможно, потому что ее ему не хватает, можно добавить и посмотреть на самочувствие. (…Понятно, что лимонная кислота (цитрат) содержится в лимонном соке ? и в клюквенном в достаточном количестве тоже.)

 ⁃ Еще было интересное исследование, что при прочих равных условиях, большее количество некрахмалистых овощей в рационе способствует большему выведению мочевой кислоты с мочой (даже если в целом пуринов с пищей поступает меньше).

 ⁃ А кетогенная диета при этом что? Ну вот пишут, что да, у людей, переходящих на кето первый раз, с вероятностью 1-2% может быть обострение подагры (причем как у тех, кто ею болел раньше, так и у тех, кто не болел); но в принципе хорошо подобранный рацион на кето удерживает уровень мочевой кислоты стабильным (если не “срываться во все тяжкие”, как на Новый год :)) Но надо наблюдать и, если и экспериментировать, то под наблюдением толкового врача и ориентируясь на противопоказания.

Итого, что имеем. Если мочевая кислота высокая, я могу: начать есть больше некрахмалистых овощей, пить больше воды (с лимонным или клюквенным соком без сахара), сократить сахар и крахмал, белком не злоупотреблять, принимать В-комплекс с витамином В1 в достаточном количестве. Знаю про активированный уголь, ощелачиватели мочи и аллопуринол, чтобы при необходимости обсуждать с лечащим врачом. 

Zhang Y, Chen C, Choi H, et al Purine-rich foods intake and recurrent gout attacks Annals of the Rheumatic Diseases 2012;71:1448-1453.

Saito J, Matsuzawa Y, Ito H, Omura M, Ito Y, Yoshimura K, Yajima Y, Kino T, Nishikawa T. The alkalizer citrate reduces serum uric Acid levels and improves renal function in hyperuricemic patients treated with the xanthine oxidase inhibitor allopurinol. Endocr Res. 2010;35(4):145-54. doi: 10.3109/07435800.2010.497178. PMID: 20958145; PMCID: PMC3413920.

Saito, Jun & Matsuzawa, Yoko & Ito, Hiroko & Omura, Masao & Kino, Tomoshige & Nishikawa, Tetsuo. (2013). Alkalizer Administration Improves Renal Function in Hyperuricemia Associated with Obesity. Japanese clinical medicine. 4. 1-6. 10.4137/JCM.S10056. 

Kanbara, A., Hakoda, M. & Seyama, I. Urine alkalization facilitates uric acid excretion. Nutr J 9, 45 (2010). https://doi.org/10.1186/1475-2891-9-45

Drabkin, M., Yogev, Y., Zeller, L., Zarivach, R., Zalk, R., Halperin, D., Wormser, O., Gurevich, E., Landau, D., Kadir, R., Perez, Y., & Birk, O. S. (2019). Hyperuricemia and gout caused by missense mutation in d-lactate dehydrogenase. The Journal of clinical investigation, 129(12), 5163–5168. https://doi.org/10.1172/JCI129057

Li, L., Zhang, Y., & Zeng, C. (2020). Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. American journal of translational research, 12(7), 3167–3181.

White, L. (2015). D-Lactic Acidosis: More prevalent than we think? Practical Gastroenterology. September 2015, pp. 26-45

https://med.virginia.edu/ginutrition/wp-content/uploads/sites/199/2014/06/Parrish-September-15.pdf

Hussain TA, Mathew TC, Dashti AA, Asfar S, Al-Zaid N, Dashti HM. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012 Oct;28(10):1016-21. doi: 10.1016/j.nut.2012.01.016. Epub 2012 Jun 5. PubMed PMID: 22673594.

Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids. 2004 Mar;70(3):309-19. Review. PubMed PMID: 14769489.

Watanabe, M, Tuccinardi, D, Ernesti, I, et al. Scientific evidence underlying contraindications to the ketogenic diet: An update. Obesity Reviews. 2020; 21:e13053. https://doi.org/10.1111/obr.13053

Как у людей с шизофренией и БАР обстоят дела с митохондриями?

В новый год с обнимку с митохондриями ? в смысле, я прочитала 9 статей про особенности (дис)функции митохондрий при биполярном расстройстве и шизофрении.

В двух словах: есть явные проблемы с митохондриями, которые возможно компенсировать, используя как психотропные препараты, так и (или) другие вмешательства, оптимизирующие функцию митохондрий. Мне кажется, это имеет отношение и к нынешнему вирусу, про который известно, что он выбирает своей мишенью митохондрии. 

Желающие погрызть гранит науки, добро пожаловать ? 

Что уже знала к моменту чтения:

 ⁃ пока не существует биомаркеров, которые бы могли помочь предсказать, какие лекарства помогут какому пациенту (подбор осуществляется методом проб и наблюдения за соотношением положительного результата и отрицательных побочных эффектов); было бы реально круто, если бы такие биомаркеры были; 

 ⁃ работа митохондрий, эффективное производство энергии, регуляция внутриклеточной концентрации кальция и подвижность митохондрий крайне важны для клеток мозга, потому что синаптогенез и обусловленная им нейропластичность — крайне энергоемкие процессы;

 ⁃ дизрегуляция концентрации кальция и дисфункция митохондрий взаимно обусловливают друг друга; 

 ⁃ выделение нейротрансмиттеров и их обратный захват — также энергоемкие процессы, и функция митохондрий влияет и на них;

 ⁃ чтобы образовывались синапсы и выделялись нейротрансмиттеры, нужно, чтобы митохондрии внутри клеток были достаточно подвижными; высокая концентрация кальция и АДФ в клетке снижает подвижность митохондрий;

 ⁃ неоптимальная работа митохондрий приводит к окислительному стрессу — свободные радикалы окисляют все, что им попадается (ДНК и РНК, липиды, белки);

 ⁃ большая часть свободных радикалов выделяется при работе первого комплекса (особенно при нехватке коэнзима Q10); для их нейтрализации нужно достаточное количество антиоксидантов, производимых преимущественно самой клеткой;

 ⁃ хроническое воспаление повышает проницаемость митохондриальных мембран для свободных радикалов;

 ⁃ гипоксия ведет к повышению выделения свободных радикалов митохондриями; 

 ⁃ выделение свободных радикалов митохондриями — “заразный” процесс, одни митохондрии могут индуцировать другие;

 ⁃ окисление липидов, составляющих миелиновые оболочки отростков нейронов, ведет к нарушениям электрической проводимости и проблемам с передачей нервных импульсов;

 ⁃ для того, чтобы синтезировать и собрать воедино белки, составляющие комплексы передачи электронов в митохондриальной мембране, требуется участие как митохондриальной ДНК, так и ядерной ДНК;

 ⁃ митохондрии могут сливаться друг с другом и разделяться на более мелкие; процессы слияния помогают повышать эффективность производства энергии, процессы деления помогают отбраковывать поврежденные участки митохондриальных мембран;

 ⁃ митохондрии, будучи поврежденными, производят массу воспалительных цитокинов;

 ⁃ митохондрии при определенных условиях запускают процесс клеточной смерти (апоптоза).

Что узнала, чего раньше не знала:

 ⁃ и у пациентов с шизофренией, и у пациентов с биполярным расстройством обнаруживаются митохондриальные дисфункции (много разных вариантов);

 ⁃ если сравнивать пациентов и здоровых людей, у пациентов обнаруживаются отклонения в нескольких параметрах, связанных с функциями митохондрий; включая малую способность потреблять кислород, увеличенную утечку протонов и изменение концентрации разных белков, регулирующих функции митохондрий и их взаимодействие с клеткой в целом; 

 ⁃ при этом те же проблемы с митохондриями у многих пациентов можно обнаружить в лейкоцитах, лимфоцитах и тромбоцитах, а не только в нейронах, что гораздо удобнее для исследований и выработки диагностических маркеров;

 ⁃ при шизофрении наблюдаются изменения в метаболизме некоторых участков мозга (там отличается концентрация глюкозы, креатинфосфата и АТФ, при этом есть корреляция между концентрацией этих веществ и выраженностью редуктивной симптоматики);

 ⁃ у пациентов с биполярным расстройством и шизофренией в мозге более высокая, чем у здоровых, концентрация молочной кислоты, что указывает на то, что процессы окислительного фосфорилирования у них неэффективны и клетки прибегают к гликолизу как способу производства энергии; 

 ⁃ наиболее заметны у пациентов с шизофренией и биполярным расстройством нарушения работы первого комплекса передачи электронов (именно там образуется большая часть свободных радикалов); 

 ⁃ при этом у пациентов с биполярным расстройством нарушения работы первого комплекса достаточно типичны внутри группы (и связаны именно с нарушением передачи электронов), в то время как у пациентов с шизофренией нарушения работы первого комплекса самые разные;

 ⁃ у людей с митохондриальной дисфункцией как основным заболеванием, особенно с нарушением работы первого комплекса, достаточно часто наблюдаются симптомы, напоминающие психотические; 

 ⁃ в частности, биполярное расстройство возникает у них в 20 раз чаще, чем в выборке из генеральной совокупности; 

 ⁃ избыточная активность первого комплекса коррелирует с выраженностью продуктивной симптоматики при шизофрении; она заметно усиливается в острых состояниях;

 ⁃ митохондрии оказываются мишенью воздействия различных психотропных препаратов; некоторые препараты уменьшают количество потребляемого клеткой кислорода;

 ⁃ генетическая предрасположенность к биполярному расстройству и шизофрении может быть связана с мутациями в митохондриальной ДНК (что усиливает роль “наследования по материнской линии”); 

 ⁃ при этом наблюдается нарушение процессов слияния и разделения митохондрий у пациентов с шизофренией и биполярным расстройством; 

 ⁃ циклическая природа биполярного расстройства может объясняться колебанием в эффективности работы митохондрий (при (гипо)мании митохондрии работают гораздо быстрее, в результате получается “очень много энергии” и “очень много нейротрансмиттеров”); в том числе, это может быть связано с тем, что у людей с биполярным расстройством митохондрии в целом меньше по размеру, чем у здоровых; 

 ⁃ длительный (несколько лет) прием психотропных препаратов нормализует большую часть функций митохондрий (за исключением утечки протонов, которая у пациентов продолжает быть выше, что свидетельствует о том, что есть распаренность между комплексами передачи электронов и АТФ-синтазой и нарушения поддержания оптимального мембранного потенциала);

 ⁃ при шизофрении обнаруживаются дефекты белка, отвечающего за транспорт митохондрий внутри клетки; кроме того, что это уменьшает их подвижность, это еще не дает митохондриям эффективно секвестрировать кальций и ведет к повышению концентрации кальция в цитозоле; 

 ⁃ психотропные препараты, применяемые при шизофрении и биполярном расстройстве, влияют на концентрацию кальция; 

 ⁃ в частности, литий блокирует некоторые кальциевые каналы;

 ⁃ литий вообще может оптимизировать функцию митохондрий, но важна концентрация (слишком высокая концентрация лития угнетает функцию митохондрий) и важна специфика имеющихся митохондриальных дисфункций; 

 ⁃ вальпроевая кислота помогает регулировать концентрацию кальция, но оказывает сильное влияние на клеточный метаболизм, в том числе, делая аэробное дыхание менее эффективным как при использовании глюкозы, так и при использовании кетоновых тел в качестве топлива; 

 ⁃ оптимизации функции митохондрий у людей с биполярным расстройством сопутствует удлинение теломер (т.е. это противостоит одному из факторов биологического старения);

 ⁃ есть разница в некоторых метаболических параметрах между пациентами с униполярной депрессией и пациентами в депрессивной фазе биполярного расстройства, и эти параметры могут использоваться для дифференциальной диагностики; один из этих параметров — уровень мочевой кислоты (у людей с биполярным расстройством он бывает выше); также было обнаружено, что у людей с биполярным расстройством повышена активность первого комплекса (см.выше), а у людей с униполярной депрессией — не повышена; активность второго комплекса у всех людей с депрессией снижена по сравнению со здоровыми (…отсюда возможная польза янтарной кислоты? – ДК.); активность четвертого комплекса существенно снижена у людей с биполярным расстройством по сравнению с людьми с депрессией и здоровыми; также у людей с биполярным расстройством существенно снижена активность фермента цитратсинтазы. 

Bar-Yosef, T., Hussein, W., Yitzhaki, O., Damri, O., Givon, L., Marom, C., Gurman, V., Levine, J., Bersudsky, Y., Agam, G., & Ben-Shachar, D. (2020). Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: a proof of concept study. Scientific reports, 10(1), 12258. https://doi.org/10.1038/s41598-020-69207-4

Machado, A. K., Pan, A. Y., da Silva, T. M., Duong, A., & Andreazza, A. C. (2016). Upstream Pathways Controlling Mitochondrial Function in Major Psychosis: A Focus on Bipolar Disorder. Canadian journal of psychiatry. Revue canadienne de psychiatrie, 61(8), 446–456. https://doi.org/10.1177/0706743716648297

Bergman, O., & Ben-Shachar, D. (2016). Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes. Canadian journal of psychiatry. Revue canadienne de psychiatrie, 61(8), 457–469. https://doi.org/10.1177/0706743716648290

Kato T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr Res. 2017 Sep;187:62-66. doi: 10.1016/j.schres.2016.10.037. Epub 2016 Nov 10. PMID: 27839913.

M. ĽUPTÁK , J. HROUDOVÁ. Important Role of Mitochondria and the Effect of Mood Stabilizers on Mitochondrial Function.

Physiol. Res. 68 (Suppl. 1): S3-S15, 2019 

https://doi.org/10.33549/physiolres.934324

Cikánková T, Fišar Z, Hroudová J. In vitro effects of antidepressants and mood-stabilizing drugs on cell energy metabolism. Naunyn Schmiedebergs Arch Pharmacol. 2020 May;393(5):797-811. doi: 10.1007/s00210-019-01791-3. Epub 2019 Dec 19. PMID: 31858154.

Lundberg, M., Millischer, V., Backlund, L., Martinsson, L., Stenvinkel, P., Sellgren, C. M., Lavebratt, C., & Schalling, M. (2020). Lithium and the Interplay Between Telomeres and Mitochondria in Bipolar Disorder. Frontiers in psychiatry, 11, 586083. https://doi.org/10.3389/fpsyt.2020.586083

Zvěřová, M., Hroudová, J., Fišar, Z., Hansíková, H., Kališová, L., Kitzlerová, E., Lambertová, A., & Raboch, J. (2019). Disturbances of mitochondrial parameters to distinguish patients with depressive episode of bipolar disorder and major depressive disorder. Neuropsychiatric disease and treatment, 15, 233–240. https://doi.org/10.2147/NDT.S188964

Что может приводить к гипоксии тканей при синдроме хронической усталости (поствирусном синдроме)?

Похоже, я из Общества анонимных недышащих. “Привет, меня зовут Дарья, и я не дышу”. 

На самом деле, вчера выяснилось несколько удивительнейших вещей (хотя, в ретроспективе, весьма логичных). Но по порядку (лонгриииид). Это ход моих попыток понять про гипоксию тканей при СХУ. 

Надо было вчера мне за каким-то медицинским-самоисследовательским рожном дохнуть в трубочку, чтобы что-то там померить. А трубочка мне и говорит человеческим голосом: “Вы не дЫшите! Давайте дышИте!” И тут постиг меня инсайт, а потом целая цепочка (не без помощи статей из Пабмеда и друга с доступом к университетской библиотеке). 

Есть такая гипотеза (например, у того же д-ра Дэвида Белла, который шкалу интенсивности СХУ предложил), что основной механизм СХУ — это гипоксия тканей. И если, допустим, умная трубочка с человеческим голосом считает, что я для человека дышу недостаточно, то, скорее всего, та самая гипоксия тканей у меня и есть. 

(дальше воображаемый плакат с красноармейцем, грозно спрашивающим у зрителя: “А все ли в порядке с дыханием у тебя?”)

Я с детства по себе знала, что я не могу бежать длинную дистанцию, потому что не могу дышать. На то, чтобы дышать равномерно и достаточно интенсивно, у меня уходит столько сил и внимания, что сама оставшаяся физическая нагрузка не вызывает ровным счетом никакого удовольствия. Я могла очень быстро пробежать короткую дистанцию (до 100 метров), но все это время я не дышала. (…складывает в копилочку анамнеза гипотезу под названием “нарушение центральной автономной регуляции дыхания”). То есть, если я специально не уделяю дыханию внимание, я дышу поверхностно и нерегулярно. На ходьбу с разговорами хватает, но бежать? — увольте. 

С плаванием была та же ерунда. И проявлялось это в том, что у меня резко и интенсивно уставали и тяжелели мышцы (…здравствуй, лактоацидоз, связанный с неэффективным энергетическим метаболизмом в мышечных клетках). То есть типа легла на воду и лежать-то я на ней могу, но если я начинаю делать усилие, мне очень скоро нужно остановиться и “постоять” или “повисеть” на чем-то и перевести дыхание. “Скажите, где здесь дно?”

Один из самых мерзких симптомов СХУ — это невосстанавливающий сон, когда ты просыпаешься  без ощущения, что ты отдохнула, а, скорее, наоборот, будто ты ночью вагоны разгружала, и с утра тебе конкретно нехорошо несколько часов, нужно время на “прийти в себя”. Похоже, тут тоже гипоксия тканей сильно подгадила. Если я ночью не дышу в достаточной мере (хотя и сплю уже годами в пресловутой прон-позиции), моим митохондриям не хватает кислорода, чтобы осуществлять аэробный метаболизм (хоть-те на углеводах, хоть-те на жирах), и тогда остальная клетка говорит: “Ну, АТФ нужна, давайте мы как-нибудь сами, без митохондрий и без кислорода”. Про это д-р Сара Майхилл подробно пишет. Клетка, конечно, может генерировать АТФ и без кислорода и митохондрий, но медленно и неэффективно. При этом образуется молочная кислота, и образуется ее столько, что печень не справляется ее достаточно быстро нейтрализовать и преобразовывать. Причем на то, чтобы это с ней сделать, уходит втрое больше АТФ, чем было создано анаэробным способом. В итоге мы постоянно “в энергетических долгах” у организма. 

А теперь смотрите на эту красоту. Клетки были в гипоксии, и тут мы проснулись, ласточки, замахали крыльями, задышали, кислород пошел в клетки, и что мы имеем? Ишемию-реперфузию. Про это у д-ра Ли Ноу подробнее. В двух словах, митохондрии подорвались резко накрутить энергии с использованием долгожданного кислорода, и по ходу наделали просто огромное количество свободных радикалов, которые пошли фигачить по чему попало, окисляя это до невозможности использования. Потому что кислород-то есть, а вот разных переносчиков электронов в достаточном количестве не подогнали еще. 

(А если эти митохондрии еще и пострадали от вируса или сразу были не в лучшем виде, то они всегда много свободных радикалов производят. Особенно на высокоуглеводной диете.)

Вот мы в общих чертах увидели два “конца отрезка” дыхательного процесса (как он регулируется мозгом и как там внутри клетки чего). А посередине у нас “транспорт кислорода клетками крови”. Все уже прочитали, думаю, про проблему гипоксии тканей из-за образования микротромбов при нынешнем вирусе, и что антикоагулянты помогают сделать так, чтобы эритроциты все-таки могли пролезть в микрокапилляры и выполнить свою благородную миссию. Так что я не буду на этом останавливаться. 

Но тут, что называется, “следите за руками”: чтобы пролезть в микрокапилляр, эритроцит (двояковогнутый диск, круглый бублик-без-дырки) должен мочь принять овальную форму, “сплющиться”, иначе он просто не поместится туда. А у некоторых людей способность эритроцитов это делать просто нарушена. Эритроциты не сплющиваются и, “видя”, что не пролезут в микрокапилляр, просто туда не “идут”. Здравствуй, гипоксия тканей, еще раз. И как вы думаете, у кого способность эритроцитов к изменению формы в разы ниже, чем у здоровых людей? Правильно, у людей с СХУ. 

Окей, из легких кислород попадает в кровоток, там он присоединяется к гему гемоглобина в эритроцитах, “едет” на них, а там, где он нужен, отсоединяется от гема. В идеале. А что, если и тут у нас что-то засбоило? 

Знакомьтесь: метгемоглобин. Это окисленная (…свободными радикалами!) форма гемоглобина, которая вцепилась в кислород мертвой хваткой и не отдает его (…хоть он дерись (с)). Эритроциты с метгемоглобином — нерабочие, они ездят по кровеносной системе туда-сюда вообще без толку в плане транспорта кислорода. У здорового человека таких товарищей меньше 1%, их стараются восстановить до нормального гемоглобина, но если не удается, то метят и отправляют “в утиль” (на вторичную переработку) в печень (а также посылают запрос в костный мозг, чтобы новых хороших прислали уже). Если у человека больше 10% эритроцитов с метгемоглобином, это диагностируемое состояние метгемоглобинемия, которое необходимо лечить, и порой срочно. Кровь при этом ржаво-шоколадного цвета, а кожа и слизистые синие. Лечат это прокапыванием метиленового синего, потому что он ингибитор моноаминоксидазы (…как некоторые типы антидепрессантов, кстати). 

А у людей с СХУ “субклинический” уровень метгемоглобина. Еще не 10%, но значимо выше, чем у здорового человека. Эритроциты как бы есть, но их как бы и нет. 

Про метгемоглобин интересно еще и то, что он создается в результате воздействия разных химических агентов — лекарств (например, некоторых антибиотиков и средств, применяемых для анестезии), а также химикатов типа нитритов (нитраты под подозрением). В норме это окисленное состояние гемоглобина восстанавливается до нормального гемоглобина при помощи специального фермента, синтезируемого в печени и работающего в присутствии NADH. Если кого-то из них не хватает, метгемоглобин не восстанавливается. 

А если там еще есть какая-нибудь гемоглобинопатия (мутация в структуре белка гемоглобина, которая в здоровом состоянии не оказывает влияния, потому что если бы что-то было совсем серьезное, это бы было заметно еще в младенчестве), то тут, например, при поствирусном синдроме, оказывается сильно заметно, что гемоглобин-то у нас не особо эффективно работает. И снова печень подгружается необходимостью негодных “разобрать”, а костный мозг выдает незрелые клетки (какие успел вырастить, такие и выдает) (…складывает в копилочку анамнеза высокий билирубин и ретикулоцитоз). 

Еще бывает нарушенная кислотность крови, при которой газообмен с легкими происходит хуже. 

И это наверняка еще не все про дыхание, но то, что у меня есть на данный момент. 

Соответственно, нарушения дыхательного процесса, ведущие к гипоксии тканей, могут быть на любом уровне (или на всех). 

 ⁃ центральная автономная регуляция дыхания

 ⁃ газообмен между легкими и кровью (локальная регуляция дыхания)

 ⁃ газообмен между эритроцитами и тканями (способность эритроцитов менять форму)

 ⁃ способность гема принимать и отдавать кислород

 ⁃ переход к анаэробному метаболизму и сопутствующий лактоацидоз

В центре всей картины — окислительный стресс.

Зная это про себя как гипотезы, объясняющие один из вариантов “отчего мне так плохо”, что я могу попробовать делать на дому, чтобы себе помочь? Какие эксперименты на себе я могу поставить, на свой страх и риск?

 ⁃ поддержать митохондрии (перейти на метаболизм, использующий в качестве топлива в первую очередь жиры; добавить митопротектор таурин, коэнзим Q10) 

 ⁃ добавить антиоксиданты – витамины А, С и Е, глутатион, альфа-липоевую кислоту

 ⁃ витамины группы В (и магний с цинком как кофакторы), из витаминов группы В особое значение имеет в данном случае ниацин (В3), который служит прекурсором для NAD+ / NADH

 ⁃ получать из пищи достаточно триптофана и аспартата (они тоже нужны для  NAD+ / NADH) 

 ⁃ медитировать, постоянно уделяя внимание дыханию; делать плавные физические упражнения типа ци-гун и тай-цзи, чтобы тоже лучше дышать

у д-ра Майхилл был расчет дозировок витаминов для СХУ по весу пациента (мг/ мкг на кг), только у нее, увы, не кг, а фунты и стоуны, но я себе сделаю табличку с перерасчетом. А то не все ж стандартного для “взрослой” дозы веса 70 кг. 

Статьи, которые вдохновили меня:

Melamed, K.H., Santos, M., Oliveira, R.K.F. et al. Unexplained exertional intolerance associated with impaired systemic oxygen extraction. Eur J Appl Physiol 119, 2375–2389 (2019). https://doi.org/10.1007/s00421-019-04222-6

Richards RS, Roberts TK, McGregor NR, Dunstan RH, Butt HL. Blood parameters indicative of oxidative stress are associated with symptom expression in chronic fatigue syndrome. Redox Rep. 2000;5(1):35-41. doi: 10.1179/rer.2000.5.1.35. PMID: 10905542.

Saha et. al. (2019) Red blood cell deformability is diminished in patients with Chronic Fatigue Syndrome. Clinical Hemorheology and Microcirculation, vol. 71, no. 1, pp. 113-116, 2019. DOI: 10.3233/CH-180469

С какими симптомами может столкнуться человек при поствирусном синдроме?

Дальше в книге “Диагностика и лечение синдрома хронической усталости и миалгического энцефаломиелита” доктор Сара Майхилл* перечисляет основные симптомы, с которыми сталкиваются люди, получающие этот диагноз, и возможные биологические механизмы этих симптомов. 

Этот диагноз в свое время впитал в себя, среди прочих, диагноз “поствирусный синдром”, и диагноз “поствирусный синдром” надолго исчез из западных статей; а “синдром хронической усталости” надолго стали считать не результатом неоптимального функционирования клеток, тканей и органов, а подвидом психического расстройства, прописывали антидепрессанты и постепенное повышение физической нагрузки, что очень многим не помогало, а вызывало ухудшение. Но сейчас уже невозможно смотреть на него как на только “психическое нарушение”. 

Итак, что доктор Майхилл видит в СХУ:

В первую очередь, недостаточное обеспечение энергией (сюда попадают, в частности, и нарушения кровоснабжения из-за нарушений в тромбоцитах). Требования организма превышают доступное количество энергии, ее не хватает. Причем энергии не хватает всем клеткам и тканям, поэтому мы можем наблюдать самые разнообразные симптомы:

 1. Очень быстрая физическая утомляемость. Если в принципе получается оторвать голову от подушки и “сделать над собой усилие”, после этого наступает откат. 

 2. Когнитивные нарушения (объем внимания и кратковременной памяти сокращаются иногда почти до нуля).

 3. Головокружения, ощущение, что вот-вот упадешь в обморок. Низкое артериальное давление (сердце не может в полную силу сокращаться, чтобы толкать кровь).

 4. Ощущение стресса (“я не справляюсь, а должна справляться, что со мной не так”, “как же я устала, когда же все это кончится”).

 5. Плохое настроение, уныние, подавленность, печаль, депрессия, тревога. “Ничего не радует, ничего не хочется”. 

 6. Боль в мышцах, которая длится долго после физической нагрузки (у организма не хватает энергии АТФ, чтобы быстро “разобрать” молочную кислоту, поэтому молочная кислота держится дольше, и от этого больно). 

 7. Периодическое падение остроты зрения (мышцы глаз, помогающие фокусировать хрусталик, тоже утомляются). 

(тут я добавлю, что может иногда случаться и недержание мочи, т.к. мышцы сфинктеров тоже утомляются. — ДК)

В тяжелых случаях СХУ добавляются

 8. Чувствительность к свету (до такой степени, что невозможно читать и смотреть в экран).

 9. Звуковая чувствительность. 

 10. Непереносимость жары и холода, очень сильное ощущение дискомфорта, когда слишком жарко или слишком холодно (а оптимальный температурный диапазон при этом сужается). 

 11. Боли в сердце (оно тоже мышца и в нем тоже накапливается молочная кислота), нарушения сердечной деятельности (низкое давление, аритмии, синдром ортостатической постуральной тахикардии (когда встаешь, сердце бьется очень часто и темнеет в глазах и/или тошнит, а иногда, встав, теряешь сознание)). 

Также д-р Майхилл отмечает, что у некоторых пациентов с тяжелой формой СХУ наблюдается открытое овальное окно — из-за низкого кровяного давления открывается клапан в сердце, регулирующий ток крови в легкие, и часть крови в легкие не попадает и не насыщается кислородом. 

 12. Одышка, ощущение, что не хватает воздуха. 

 13. Вторичная дисфункция иммунной системы, уязвимость по отношению к инфекциям, медленное заживление ран. 

 14. Дисфункция печени. 

 15. Нарушения пищеварения и усвоения питательных веществ. 

 16. Проблемы эндокринной регуляции (дисфункция щитовидной железы и/или надпочечников). 

 17. Дисфункция почек. 

 18. Снижение либидо (потому что ну какое тут размножение, если вся энергия уходит на то, чтобы самому организму хоть как-то выжить). 

 19. Остеопороз, вторичный по отношению к мышечной атрофии (саркопении). 

Если при этом есть еще воспаление и избыточная активация иммунной системы (ввиду длящейся инфекции, непереносимостей (в т.ч. аллергий) и/или аутоиммунного процесса, добавляются дополнительные симптомы, и тогда ставится диагноз “миалгический энцефаломиелит”. 

 20. Кашель, насморк. Отек лимфатических узлов.

21. Кожные симптомы (покраснение, крапивница, раздражение, экзема, высыпания, нарушение чувствительности участков кожи).

 22. Синдром раздраженной кишки (по типу запоров, поноса, или непредсказуемого чередования того и другого).

 23. Головные боли, мигрени, в том числе сопровождающиеся потерей координации движений. 

 24. Воспалительные заболевания мочеполовой системы. 

 25. Звон в ушах.

 26. Артрит, миозит. 

 27. Субфебрильная или высокая температура. 

Это все, в пределе, говорит д-р Майхилл, “не ипохондрия, а митохондрии”. И предлагает читателю занять позицию исследователя собственной жизни, детектива, проводящего расследование, чтобы разобраться, что именно попортилось в его конкретном случае, и как это починить. 

*если вы будете гуглить доктора Майхилл на русском языке, вы обнаружите загадочное явление: первое издание книги доктора Майхилл на русском с указанием имени “Михаил Титов” в качестве первого автора. Вклад оного персонажа в книгу неясен, равно как и права на перевод “на его совести”, но если вы ее купите, деньги получит он. Я не стала покупать и не советую; но тут каждый сам решает в соответствии со своими убеждениями.