Что еще пишет доктор Белл о механизмах синдрома хронической усталости?

Дальше в книге про клеточную гипоксию и нейроиммунную усталость доктор Белл пишет про цитокиновый каскад. Сейчас это уже тоже знание, перешедшее в мэйнстрим благодаря ковиду, мне кажется (…как в той шутке про книжный магазин, что “книги про эпидемиологии мы переставили в раздел “Самопомощь””). 

Доктор Белл подчеркивает что паршиво мы себя чувствуем, болея, в существенной степени не из-за самой инфекции, а из-за иммунного ответа. Именно повышение концентрации воспалительных цитокинов ведет к снижению активности, слабости, плохому самочувствию, желанию изолироваться и “чтоб никто не трогал”, а также разным нарушениям настроения, внимания, памяти и мышления. 

При синдроме хронической усталости (СХУ) (в том числе, пост-инфекционном или поствирусном синдроме) что-то ломается в механизме остановки цитокинового каскада; при этом это может быть разное что-то у разных людей, обусловленное их специфической генетической предрасположенностью. 

Иллюстрируя роль цитокинов, доктор Белл рассказывает о синдроме хронической усталости, возникшем как побочный эффект интерфероновой терапии гепатита С у существенного количества испытуемых.

Ключевой вопрос этой монографии: Каким образом цитокиновый каскад преломляется сквозь “метаболическую призму”, порождая характерные симптомы СХУ (усталость, боль, изменения кровоснабжения органов)? Доктор Белл заявляет, что этой “метаболической призмой” является производство оксида азота NO в клетке, причем главным биологическим механизмом СХУ является нарушение процессов окислительного фосфорилирования в митохондриях (за счет которого мы в основном и производим энергию). 

Оксид азота NO постоянно производится в клетках, но существует крайне недолго. В первую очередь медицина обратила на него внимание в контексте сердечно-сосудистых заболеваний, т.к. он расширяет кровеносные сосуды, способствуя улучшению кровоснабжения, и модулирует активность тромбоцитов. Но вообще у него масса регуляторных функций. И главное, чтобы он присутствовал в правильной концентрации, не слишком мало и не слишком много.

Производится он из аминокислоты L-аргинина при помощи фермента – синтазы оксида азота (СОА). Ее есть четыре разных вида, в частности, индуцибельная СОА, которую индуцирует (запускает в дело) инфекция. Это делается для того, чтобы увеличился приток крови (и иммунных клеток, соответственно) к очагу инфекции; также при этом увеличивается проницаемость барьерных эпителиев, с той же целью. 

А при распаде оксида азота образуются свободные радикалы. 

Доктор Белл рассказывает о роли оксида азота в разворачивании механизмов септического шока при системной бактериальной инфекции. “Иногда кажется, — пишет доктор Белл, — что синдром хронической усталости похож на септический шок, только с меньшей интенсивностью и в замедленном темпе; в отличие от септического шока, СХУ редко представляет риск для жизни”.

Далее доктор Белл подробно рассматривает каждую группу симптомов СХУ. Сначала — проблемы с сосудами. В целом у людей с СХУ часто пониженное давление. Часто наблюдаются перепады давления при смене положения (если встать, начинает кружиться голова). При этом бывают “скачки” давления (доктор Белл предполагает, что это надпочечники пытаются компенсировать слишком сильное расширение сосудов из-за избытка NO. В частности, именно работой этого механизма он объясняет высокое диастолическое давление у людей с СХУ. 

Еще очень интересный факт, который приводит доктор Белл, связан с тем, что у людей с СХУ, по сравнению со здоровыми, уменьшен объем циркулирующей крови, причем бывает, что весьма значительно. Т.е. на обычных анализах крови количество эритроцитов и гемоглобина выглядит нормальным (на единицу объема взятой крови), но то, что общее количество эритроцитов и гемоглобина существенно ниже, чем у здорового человека, при этом не видно. Снижение абсолютного количества гемоглобина ограничивает количество кислорода, которое может быть доставлено клеткам. Снижение объема циркулирующей крови может объяснять симптомы головокружения и сердцебиения (тахикардии) при вертикальном положении тела, а также разнообразные головные боли у пациентов с СХУ (попытка организма компенсировать недостаточный объем циркулирующей крови сужением сосудов). 

Вторая группа симптомов — снижение порога чувствительности центральной нервной системы и нарушение способности модулировать порог чувствительности. В частности, это относится к болевой чувствительности. При СХУ “болит всё”, при этом структурные нарушения в том, что болит, не выявляются, и в силу этого часто эта боль считается “психогенной” и пациентов перенаправляют к психиатру. Доктор Белл говорит, что органический субстрат у этой боли имеется — во внутриклеточных нарушениях функционирования нейронов и в нарушении их взаимодействия с клетками глии. Также снижение порога чувствительности относится к слуху; люди с СХУ плохо переносят громкие звуки и шумовое загрязнение, им крайне необходима тишина (многие используют беруши и тому подобные средства). Нахождение в шумных помещениях с массой движущихся людей, где необходимо стоять/идти и постоянно внимательно следить за большим количеством входящей информации (метро, крупные торговые центры) — это худшая возможная обстановка для людей с СХУ. (Тут доктор Белл со своим неподражаемым ехидством добавляет: “Счастливого Рождества!”) 

Собственно про клеточную гипоксию и что с ней делать, доктор Белл объясняет очень коротко и “на пальцах”, потому что ему в 2007 году явно не хватало данных. Но с тех пор было опубликовано много исследований, которые многое проясняют, вполне в соответствии с общей направленностью идей доктора Белла. Книга доктора Майхилл, опубликованная в 2014 году, многое добавляет именно в контексте рассмотрения дисфункции митохондрий при СХУ. Нынешние исследования ковида и постковидного синдрома, думаю, смогут дать для понимания этих механизмов еще больше. 

Что еще известно о нейроиммунологии биполярного расстройства? Что такое кинурениновый путь метаболизма триптофана?

Сегодня читала три статьи про нейроиммунологию биполярного расстройства, опубликованные в разных журналах в 2019-2020 году. Совершенно друг другу не противоречат ? (…было бы странно, если бы противоречили).

Вот основные тезисы.

При БАР выявляются:

 ⁃ дисфункция иммунной системы, в том числе повышенный уровень воспалительных цитокинов (как в маниакальной, так и в депрессивной фазе заболевания); чем выше уровень воспалительных цитокинов, тем хуже ответ на лечение нормотимиками при БАР и антидепрессантами при униполярной депрессии; (ну, что воспалительные цитокины вызывают депрессивные состояния, известно всем, у кого когда-либо что-то сильно воспалялось; а сейчас после знакомства с понятием “цитокинового шторма” это вообще мэйнстримное знание, насколько можно судить); но тут важен кинурениновый путь метаболизма триптофана, см.ниже;

 ⁃ повышенный уровень С-реактивного белка, особенно в маниакальной фазе; 

 ⁃ повышенное количество лейкоцитов;

 ⁃ повышенное количество нейтрофилов;

 ⁃ гиперактивность Т-лимфоцитов;

 ⁃ постоянная или периодическая повышенная проницаемость гематоэнцефалического барьера, которая может быть вызвана избыточной активацией клеток глии;

 ⁃ нарушения миелинизации нейронов, связанные, вероятно, с нарушением активности олигодендроцитов;

 ⁃ значительное количество локусов метилирования ДНК (это один из механизмов того, как наша биография становится биологией (причем не только нашей, но и потомков));

 ⁃ окислительный стресс и митохондриальная дисфункция, в частности, нарушен процесс “отбраковки” поврежденных участков митохондрий;

 ⁃ недостаточность трофических факторов ЦНС, при этом выявляется характерный для БАР полиморфизм гена, отвечающего за мозговой трофический фактор (BDNF);

 ⁃ нарушение чувствительности оси гипоталамус-гипофиз-надпочечники, избыточная секреция кортизола, уменьшение количества рецепторов к глюкокортикодам; при этом тут заметны колебания в зависимости от фазы болезни;

 ⁃ сбои/ сдвиги циркадианного ритма, связанные с нарушением секреции мелатонина; они, в свою очередь, способствуют “разбалансировке” иммунной системы и нарушению чувствительности оси гипоталамус-гипофиз-надпочечники;

 ⁃ в некоторых случаях БАР —  избыточное количество жировой ткани (особенно в области живота), которое само по себе является источником воспалительных цитокинов; при этом и гиподинамия в депрессивной фазе, и нарушение регуляции голода/насыщения при избыточном количестве кортизола, и представления о том, что мозг питается только глюкозой, способствуют избыточному поступлению углеводов и тем самым накоплению жировой ткани;

 ⁃ ускорение биологического старения.

Отдельное внимание уделяется кинурениновому пути метаболизма триптофана. В присутствии воспалительных цитокинов активируется фермент индоламин-2,3-диоксигеназа, преобразующий триптофан не в серотонин, а в кинуренин. Количество кинуренина положительно коррелирует с интенсивностью симптомов депрессии (как униполярной, так и депрессивной фазы БАР). 

Далее в клетках глии кинуренин превращается в астроцитах в кинуреновую кислоту, а в клетках микроглии — в гидроксикинуренин и хинолиновую кислоту (которые способствуют активации рецепторов в клеточной мембране, которые закачивают в клетку избыточное количество кальция. Из-за этого, в частности, в клетках мозга нарушается функция митохондрий, производится избыточное количество свободных радикалов и синтезируются воспалительные цитокины. Кинуреновая кислота в какой-то степени выступает как нейропротектор, но когда ее слишком много, это может сопровождаться психотическими симптомами.

Ну и, соответственно, когда триптофан преобразован в кинуренин, на синтез серотонина и далее мелатонина его не хватает. Но если просто добавить триптофана, толку мало, т.е. будет больше кинуренина. 

Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, et al. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. Braz J Psychiatry. 2020;42:536-551. http://dx.doi.org/10.1590/1516-4446-2019-0732

Benedetti, F., Aggio, V., Pratesi, M. L., Greco, G., & Furlan, R. (2020). Neuroinflammation in Bipolar Depression. Frontiers in psychiatry, 11, 71. https://doi.org/10.3389/fpsyt.2020.00071

Niu, Z., Yang, L., Wu, X., Zhu, Y., Chen, J., & Fang, Y. (2019). The Relationship Between Neuroimmunity and Bipolar Disorder: Mechanism and Translational Application. Neuroscience bulletin, 35(4), 595–607. https://doi.org/10.1007/s12264-019-00403-7

Как связаны нарушения сна и отклонения в структуре и функциях глии при биполярном расстройстве?

Сегодня читаю про сон и микроглию при биполярном расстройстве.

Что мне было уже известно:

 ⁃ при БАР заметно нарушен цикл сна/бодрствования, при этом в разных фазах болезни сна организму требуется разное количество; изменение количества требуемого сна может быть одним из первых “звоночков” подступающей смены фазы болезни;

 ⁃ чем больше проблем со сном, тем более выражены симптомы психических нарушений, в том числе депрессии, и тем меньше эффективность лечения; 

 ⁃ нарушения циркадианного ритма связаны с “раскоординацией” внешних сигналов и внутренних процессов организма; 

 ⁃ нарушения циркадианного ритма связаны с нарушением работы оси гипоталамус-гипофиз-надпочечники и аномальной секрецией кортизола; 

 ⁃ нарушения сна связаны с повышенным уровнем воспалительных цитокинов (и это “порочный круг”);

 ⁃ при психических расстройствах есть проблемы не только с нейронами, но и с клетками глии;

 ⁃ гомеостаз сна регулируется накоплением аденозина в мозге во время бодрствования.

Что узнала нового:

 ⁃ нарушения сна наблюдаются в целом у 50% населения мира (…ого; “я такой не один, нас таких несколько”);

 ⁃ что полиморфизмы в одном из “циркадианных” генов (PER) связаны с одним из фенотипов БАР (и это как раз те люди, которым помогает литий);

 ⁃ для “жаворонков” характерен длинный аллель гена PER3 (PER 5/5), а для “сов” – короткий (PER 4/4);

 ⁃ у пациентов с БАР было показано, что нарушения циркадианного ритма связаны с повышением количества свободных радикалов (…привет, митохондрии!);

 ⁃ патология в структуре, метаболизме и функциях клеток глии особенно выражена при БАР и униполярной депрессии; их становится заметно меньше, чем у здоровых людей (в коре головного мозга и миндалине теряется до 20-40% клеток глии); 

 ⁃ при БАР атрофируются и “замедляются” астроциты; снижается их плотность в коре и гиппокампе; 

 ⁃ серьезные патологические изменения в астроцитах были выявлены при анализах ткани мозга людей с депрессией, которые покончили с собой; 

 ⁃ на животных было показано, что изменения в количестве, структуре и функциях клеток глии могут быть вызваны хроническим и острым стрессом (в том числе по типу “неблагоприятного детского опыта”); в том числе механизмом этой атрофии может являться избыточное количество кортизола; а также нарушение метаболизма глютамата, ведущее к эксайтотоксичности; 

 ⁃ черепно-мозговая травма приводит к аналогичным последствиям (атрофии глии и потере ее функций);

 ⁃ транскраниальная магнитная стимуляция, применяемая для лечения депрессии, воздействует преимущественно на астроциты;

 ⁃ литий и вальпроевая кислота снижают нейровоспаление, воздействуя на активацию астроцитов; они же и карбамазепин снижают эксайтотоксичность;

 ⁃ именно астроциты выделяют мозговой трофический фактор (BDNF);

 ⁃ именно астроциты выделяют аденозин.

В общем, авторы статьи подчеркивают, что важной мишенью лечения БАР должна быть глия. 

#биполярное_расстройство #хронопсихиатрия #сон #нарушения_сна #микроглия #глия #астроциты #нейровоспаление 

Steardo, L., Jr, de Filippis, R., Carbone, E. A., Segura-Garcia, C., Verkhratsky, A., & De Fazio, P. (2019). Sleep Disturbance in Bipolar Disorder: Neuroglia and Circadian Rhythms. Frontiers in psychiatry, 10, 501. https://doi.org/10.3389/fpsyt.2019.00501

Как у людей с шизофренией и БАР обстоят дела с митохондриями?

В новый год с обнимку с митохондриями ? в смысле, я прочитала 9 статей про особенности (дис)функции митохондрий при биполярном расстройстве и шизофрении.

В двух словах: есть явные проблемы с митохондриями, которые возможно компенсировать, используя как психотропные препараты, так и (или) другие вмешательства, оптимизирующие функцию митохондрий. Мне кажется, это имеет отношение и к нынешнему вирусу, про который известно, что он выбирает своей мишенью митохондрии. 

Желающие погрызть гранит науки, добро пожаловать ? 

Что уже знала к моменту чтения:

 ⁃ пока не существует биомаркеров, которые бы могли помочь предсказать, какие лекарства помогут какому пациенту (подбор осуществляется методом проб и наблюдения за соотношением положительного результата и отрицательных побочных эффектов); было бы реально круто, если бы такие биомаркеры были; 

 ⁃ работа митохондрий, эффективное производство энергии, регуляция внутриклеточной концентрации кальция и подвижность митохондрий крайне важны для клеток мозга, потому что синаптогенез и обусловленная им нейропластичность — крайне энергоемкие процессы;

 ⁃ дизрегуляция концентрации кальция и дисфункция митохондрий взаимно обусловливают друг друга; 

 ⁃ выделение нейротрансмиттеров и их обратный захват — также энергоемкие процессы, и функция митохондрий влияет и на них;

 ⁃ чтобы образовывались синапсы и выделялись нейротрансмиттеры, нужно, чтобы митохондрии внутри клеток были достаточно подвижными; высокая концентрация кальция и АДФ в клетке снижает подвижность митохондрий;

 ⁃ неоптимальная работа митохондрий приводит к окислительному стрессу — свободные радикалы окисляют все, что им попадается (ДНК и РНК, липиды, белки);

 ⁃ большая часть свободных радикалов выделяется при работе первого комплекса (особенно при нехватке коэнзима Q10); для их нейтрализации нужно достаточное количество антиоксидантов, производимых преимущественно самой клеткой;

 ⁃ хроническое воспаление повышает проницаемость митохондриальных мембран для свободных радикалов;

 ⁃ гипоксия ведет к повышению выделения свободных радикалов митохондриями; 

 ⁃ выделение свободных радикалов митохондриями — “заразный” процесс, одни митохондрии могут индуцировать другие;

 ⁃ окисление липидов, составляющих миелиновые оболочки отростков нейронов, ведет к нарушениям электрической проводимости и проблемам с передачей нервных импульсов;

 ⁃ для того, чтобы синтезировать и собрать воедино белки, составляющие комплексы передачи электронов в митохондриальной мембране, требуется участие как митохондриальной ДНК, так и ядерной ДНК;

 ⁃ митохондрии могут сливаться друг с другом и разделяться на более мелкие; процессы слияния помогают повышать эффективность производства энергии, процессы деления помогают отбраковывать поврежденные участки митохондриальных мембран;

 ⁃ митохондрии, будучи поврежденными, производят массу воспалительных цитокинов;

 ⁃ митохондрии при определенных условиях запускают процесс клеточной смерти (апоптоза).

Что узнала, чего раньше не знала:

 ⁃ и у пациентов с шизофренией, и у пациентов с биполярным расстройством обнаруживаются митохондриальные дисфункции (много разных вариантов);

 ⁃ если сравнивать пациентов и здоровых людей, у пациентов обнаруживаются отклонения в нескольких параметрах, связанных с функциями митохондрий; включая малую способность потреблять кислород, увеличенную утечку протонов и изменение концентрации разных белков, регулирующих функции митохондрий и их взаимодействие с клеткой в целом; 

 ⁃ при этом те же проблемы с митохондриями у многих пациентов можно обнаружить в лейкоцитах, лимфоцитах и тромбоцитах, а не только в нейронах, что гораздо удобнее для исследований и выработки диагностических маркеров;

 ⁃ при шизофрении наблюдаются изменения в метаболизме некоторых участков мозга (там отличается концентрация глюкозы, креатинфосфата и АТФ, при этом есть корреляция между концентрацией этих веществ и выраженностью редуктивной симптоматики);

 ⁃ у пациентов с биполярным расстройством и шизофренией в мозге более высокая, чем у здоровых, концентрация молочной кислоты, что указывает на то, что процессы окислительного фосфорилирования у них неэффективны и клетки прибегают к гликолизу как способу производства энергии; 

 ⁃ наиболее заметны у пациентов с шизофренией и биполярным расстройством нарушения работы первого комплекса передачи электронов (именно там образуется большая часть свободных радикалов); 

 ⁃ при этом у пациентов с биполярным расстройством нарушения работы первого комплекса достаточно типичны внутри группы (и связаны именно с нарушением передачи электронов), в то время как у пациентов с шизофренией нарушения работы первого комплекса самые разные;

 ⁃ у людей с митохондриальной дисфункцией как основным заболеванием, особенно с нарушением работы первого комплекса, достаточно часто наблюдаются симптомы, напоминающие психотические; 

 ⁃ в частности, биполярное расстройство возникает у них в 20 раз чаще, чем в выборке из генеральной совокупности; 

 ⁃ избыточная активность первого комплекса коррелирует с выраженностью продуктивной симптоматики при шизофрении; она заметно усиливается в острых состояниях;

 ⁃ митохондрии оказываются мишенью воздействия различных психотропных препаратов; некоторые препараты уменьшают количество потребляемого клеткой кислорода;

 ⁃ генетическая предрасположенность к биполярному расстройству и шизофрении может быть связана с мутациями в митохондриальной ДНК (что усиливает роль “наследования по материнской линии”); 

 ⁃ при этом наблюдается нарушение процессов слияния и разделения митохондрий у пациентов с шизофренией и биполярным расстройством; 

 ⁃ циклическая природа биполярного расстройства может объясняться колебанием в эффективности работы митохондрий (при (гипо)мании митохондрии работают гораздо быстрее, в результате получается “очень много энергии” и “очень много нейротрансмиттеров”); в том числе, это может быть связано с тем, что у людей с биполярным расстройством митохондрии в целом меньше по размеру, чем у здоровых; 

 ⁃ длительный (несколько лет) прием психотропных препаратов нормализует большую часть функций митохондрий (за исключением утечки протонов, которая у пациентов продолжает быть выше, что свидетельствует о том, что есть распаренность между комплексами передачи электронов и АТФ-синтазой и нарушения поддержания оптимального мембранного потенциала);

 ⁃ при шизофрении обнаруживаются дефекты белка, отвечающего за транспорт митохондрий внутри клетки; кроме того, что это уменьшает их подвижность, это еще не дает митохондриям эффективно секвестрировать кальций и ведет к повышению концентрации кальция в цитозоле; 

 ⁃ психотропные препараты, применяемые при шизофрении и биполярном расстройстве, влияют на концентрацию кальция; 

 ⁃ в частности, литий блокирует некоторые кальциевые каналы;

 ⁃ литий вообще может оптимизировать функцию митохондрий, но важна концентрация (слишком высокая концентрация лития угнетает функцию митохондрий) и важна специфика имеющихся митохондриальных дисфункций; 

 ⁃ вальпроевая кислота помогает регулировать концентрацию кальция, но оказывает сильное влияние на клеточный метаболизм, в том числе, делая аэробное дыхание менее эффективным как при использовании глюкозы, так и при использовании кетоновых тел в качестве топлива; 

 ⁃ оптимизации функции митохондрий у людей с биполярным расстройством сопутствует удлинение теломер (т.е. это противостоит одному из факторов биологического старения);

 ⁃ есть разница в некоторых метаболических параметрах между пациентами с униполярной депрессией и пациентами в депрессивной фазе биполярного расстройства, и эти параметры могут использоваться для дифференциальной диагностики; один из этих параметров — уровень мочевой кислоты (у людей с биполярным расстройством он бывает выше); также было обнаружено, что у людей с биполярным расстройством повышена активность первого комплекса (см.выше), а у людей с униполярной депрессией — не повышена; активность второго комплекса у всех людей с депрессией снижена по сравнению со здоровыми (…отсюда возможная польза янтарной кислоты? – ДК.); активность четвертого комплекса существенно снижена у людей с биполярным расстройством по сравнению с людьми с депрессией и здоровыми; также у людей с биполярным расстройством существенно снижена активность фермента цитратсинтазы. 

Bar-Yosef, T., Hussein, W., Yitzhaki, O., Damri, O., Givon, L., Marom, C., Gurman, V., Levine, J., Bersudsky, Y., Agam, G., & Ben-Shachar, D. (2020). Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: a proof of concept study. Scientific reports, 10(1), 12258. https://doi.org/10.1038/s41598-020-69207-4

Machado, A. K., Pan, A. Y., da Silva, T. M., Duong, A., & Andreazza, A. C. (2016). Upstream Pathways Controlling Mitochondrial Function in Major Psychosis: A Focus on Bipolar Disorder. Canadian journal of psychiatry. Revue canadienne de psychiatrie, 61(8), 446–456. https://doi.org/10.1177/0706743716648297

Bergman, O., & Ben-Shachar, D. (2016). Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes. Canadian journal of psychiatry. Revue canadienne de psychiatrie, 61(8), 457–469. https://doi.org/10.1177/0706743716648290

Kato T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr Res. 2017 Sep;187:62-66. doi: 10.1016/j.schres.2016.10.037. Epub 2016 Nov 10. PMID: 27839913.

M. ĽUPTÁK , J. HROUDOVÁ. Important Role of Mitochondria and the Effect of Mood Stabilizers on Mitochondrial Function.

Physiol. Res. 68 (Suppl. 1): S3-S15, 2019 

https://doi.org/10.33549/physiolres.934324

Cikánková T, Fišar Z, Hroudová J. In vitro effects of antidepressants and mood-stabilizing drugs on cell energy metabolism. Naunyn Schmiedebergs Arch Pharmacol. 2020 May;393(5):797-811. doi: 10.1007/s00210-019-01791-3. Epub 2019 Dec 19. PMID: 31858154.

Lundberg, M., Millischer, V., Backlund, L., Martinsson, L., Stenvinkel, P., Sellgren, C. M., Lavebratt, C., & Schalling, M. (2020). Lithium and the Interplay Between Telomeres and Mitochondria in Bipolar Disorder. Frontiers in psychiatry, 11, 586083. https://doi.org/10.3389/fpsyt.2020.586083

Zvěřová, M., Hroudová, J., Fišar, Z., Hansíková, H., Kališová, L., Kitzlerová, E., Lambertová, A., & Raboch, J. (2019). Disturbances of mitochondrial parameters to distinguish patients with depressive episode of bipolar disorder and major depressive disorder. Neuropsychiatric disease and treatment, 15, 233–240. https://doi.org/10.2147/NDT.S188964

Что может приводить к гипоксии тканей при синдроме хронической усталости (поствирусном синдроме)?

Похоже, я из Общества анонимных недышащих. “Привет, меня зовут Дарья, и я не дышу”. 

На самом деле, вчера выяснилось несколько удивительнейших вещей (хотя, в ретроспективе, весьма логичных). Но по порядку (лонгриииид). Это ход моих попыток понять про гипоксию тканей при СХУ. 

Надо было вчера мне за каким-то медицинским-самоисследовательским рожном дохнуть в трубочку, чтобы что-то там померить. А трубочка мне и говорит человеческим голосом: “Вы не дЫшите! Давайте дышИте!” И тут постиг меня инсайт, а потом целая цепочка (не без помощи статей из Пабмеда и друга с доступом к университетской библиотеке). 

Есть такая гипотеза (например, у того же д-ра Дэвида Белла, который шкалу интенсивности СХУ предложил), что основной механизм СХУ — это гипоксия тканей. И если, допустим, умная трубочка с человеческим голосом считает, что я для человека дышу недостаточно, то, скорее всего, та самая гипоксия тканей у меня и есть. 

(дальше воображаемый плакат с красноармейцем, грозно спрашивающим у зрителя: “А все ли в порядке с дыханием у тебя?”)

Я с детства по себе знала, что я не могу бежать длинную дистанцию, потому что не могу дышать. На то, чтобы дышать равномерно и достаточно интенсивно, у меня уходит столько сил и внимания, что сама оставшаяся физическая нагрузка не вызывает ровным счетом никакого удовольствия. Я могла очень быстро пробежать короткую дистанцию (до 100 метров), но все это время я не дышала. (…складывает в копилочку анамнеза гипотезу под названием “нарушение центральной автономной регуляции дыхания”). То есть, если я специально не уделяю дыханию внимание, я дышу поверхностно и нерегулярно. На ходьбу с разговорами хватает, но бежать? — увольте. 

С плаванием была та же ерунда. И проявлялось это в том, что у меня резко и интенсивно уставали и тяжелели мышцы (…здравствуй, лактоацидоз, связанный с неэффективным энергетическим метаболизмом в мышечных клетках). То есть типа легла на воду и лежать-то я на ней могу, но если я начинаю делать усилие, мне очень скоро нужно остановиться и “постоять” или “повисеть” на чем-то и перевести дыхание. “Скажите, где здесь дно?”

Один из самых мерзких симптомов СХУ — это невосстанавливающий сон, когда ты просыпаешься  без ощущения, что ты отдохнула, а, скорее, наоборот, будто ты ночью вагоны разгружала, и с утра тебе конкретно нехорошо несколько часов, нужно время на “прийти в себя”. Похоже, тут тоже гипоксия тканей сильно подгадила. Если я ночью не дышу в достаточной мере (хотя и сплю уже годами в пресловутой прон-позиции), моим митохондриям не хватает кислорода, чтобы осуществлять аэробный метаболизм (хоть-те на углеводах, хоть-те на жирах), и тогда остальная клетка говорит: “Ну, АТФ нужна, давайте мы как-нибудь сами, без митохондрий и без кислорода”. Про это д-р Сара Майхилл подробно пишет. Клетка, конечно, может генерировать АТФ и без кислорода и митохондрий, но медленно и неэффективно. При этом образуется молочная кислота, и образуется ее столько, что печень не справляется ее достаточно быстро нейтрализовать и преобразовывать. Причем на то, чтобы это с ней сделать, уходит втрое больше АТФ, чем было создано анаэробным способом. В итоге мы постоянно “в энергетических долгах” у организма. 

А теперь смотрите на эту красоту. Клетки были в гипоксии, и тут мы проснулись, ласточки, замахали крыльями, задышали, кислород пошел в клетки, и что мы имеем? Ишемию-реперфузию. Про это у д-ра Ли Ноу подробнее. В двух словах, митохондрии подорвались резко накрутить энергии с использованием долгожданного кислорода, и по ходу наделали просто огромное количество свободных радикалов, которые пошли фигачить по чему попало, окисляя это до невозможности использования. Потому что кислород-то есть, а вот разных переносчиков электронов в достаточном количестве не подогнали еще. 

(А если эти митохондрии еще и пострадали от вируса или сразу были не в лучшем виде, то они всегда много свободных радикалов производят. Особенно на высокоуглеводной диете.)

Вот мы в общих чертах увидели два “конца отрезка” дыхательного процесса (как он регулируется мозгом и как там внутри клетки чего). А посередине у нас “транспорт кислорода клетками крови”. Все уже прочитали, думаю, про проблему гипоксии тканей из-за образования микротромбов при нынешнем вирусе, и что антикоагулянты помогают сделать так, чтобы эритроциты все-таки могли пролезть в микрокапилляры и выполнить свою благородную миссию. Так что я не буду на этом останавливаться. 

Но тут, что называется, “следите за руками”: чтобы пролезть в микрокапилляр, эритроцит (двояковогнутый диск, круглый бублик-без-дырки) должен мочь принять овальную форму, “сплющиться”, иначе он просто не поместится туда. А у некоторых людей способность эритроцитов это делать просто нарушена. Эритроциты не сплющиваются и, “видя”, что не пролезут в микрокапилляр, просто туда не “идут”. Здравствуй, гипоксия тканей, еще раз. И как вы думаете, у кого способность эритроцитов к изменению формы в разы ниже, чем у здоровых людей? Правильно, у людей с СХУ. 

Окей, из легких кислород попадает в кровоток, там он присоединяется к гему гемоглобина в эритроцитах, “едет” на них, а там, где он нужен, отсоединяется от гема. В идеале. А что, если и тут у нас что-то засбоило? 

Знакомьтесь: метгемоглобин. Это окисленная (…свободными радикалами!) форма гемоглобина, которая вцепилась в кислород мертвой хваткой и не отдает его (…хоть он дерись (с)). Эритроциты с метгемоглобином — нерабочие, они ездят по кровеносной системе туда-сюда вообще без толку в плане транспорта кислорода. У здорового человека таких товарищей меньше 1%, их стараются восстановить до нормального гемоглобина, но если не удается, то метят и отправляют “в утиль” (на вторичную переработку) в печень (а также посылают запрос в костный мозг, чтобы новых хороших прислали уже). Если у человека больше 10% эритроцитов с метгемоглобином, это диагностируемое состояние метгемоглобинемия, которое необходимо лечить, и порой срочно. Кровь при этом ржаво-шоколадного цвета, а кожа и слизистые синие. Лечат это прокапыванием метиленового синего, потому что он ингибитор моноаминоксидазы (…как некоторые типы антидепрессантов, кстати). 

А у людей с СХУ “субклинический” уровень метгемоглобина. Еще не 10%, но значимо выше, чем у здорового человека. Эритроциты как бы есть, но их как бы и нет. 

Про метгемоглобин интересно еще и то, что он создается в результате воздействия разных химических агентов — лекарств (например, некоторых антибиотиков и средств, применяемых для анестезии), а также химикатов типа нитритов (нитраты под подозрением). В норме это окисленное состояние гемоглобина восстанавливается до нормального гемоглобина при помощи специального фермента, синтезируемого в печени и работающего в присутствии NADH. Если кого-то из них не хватает, метгемоглобин не восстанавливается. 

А если там еще есть какая-нибудь гемоглобинопатия (мутация в структуре белка гемоглобина, которая в здоровом состоянии не оказывает влияния, потому что если бы что-то было совсем серьезное, это бы было заметно еще в младенчестве), то тут, например, при поствирусном синдроме, оказывается сильно заметно, что гемоглобин-то у нас не особо эффективно работает. И снова печень подгружается необходимостью негодных “разобрать”, а костный мозг выдает незрелые клетки (какие успел вырастить, такие и выдает) (…складывает в копилочку анамнеза высокий билирубин и ретикулоцитоз). 

Еще бывает нарушенная кислотность крови, при которой газообмен с легкими происходит хуже. 

И это наверняка еще не все про дыхание, но то, что у меня есть на данный момент. 

Соответственно, нарушения дыхательного процесса, ведущие к гипоксии тканей, могут быть на любом уровне (или на всех). 

 ⁃ центральная автономная регуляция дыхания

 ⁃ газообмен между легкими и кровью (локальная регуляция дыхания)

 ⁃ газообмен между эритроцитами и тканями (способность эритроцитов менять форму)

 ⁃ способность гема принимать и отдавать кислород

 ⁃ переход к анаэробному метаболизму и сопутствующий лактоацидоз

В центре всей картины — окислительный стресс.

Зная это про себя как гипотезы, объясняющие один из вариантов “отчего мне так плохо”, что я могу попробовать делать на дому, чтобы себе помочь? Какие эксперименты на себе я могу поставить, на свой страх и риск?

 ⁃ поддержать митохондрии (перейти на метаболизм, использующий в качестве топлива в первую очередь жиры; добавить митопротектор таурин, коэнзим Q10) 

 ⁃ добавить антиоксиданты – витамины А, С и Е, глутатион, альфа-липоевую кислоту

 ⁃ витамины группы В (и магний с цинком как кофакторы), из витаминов группы В особое значение имеет в данном случае ниацин (В3), который служит прекурсором для NAD+ / NADH

 ⁃ получать из пищи достаточно триптофана и аспартата (они тоже нужны для  NAD+ / NADH) 

 ⁃ медитировать, постоянно уделяя внимание дыханию; делать плавные физические упражнения типа ци-гун и тай-цзи, чтобы тоже лучше дышать

у д-ра Майхилл был расчет дозировок витаминов для СХУ по весу пациента (мг/ мкг на кг), только у нее, увы, не кг, а фунты и стоуны, но я себе сделаю табличку с перерасчетом. А то не все ж стандартного для “взрослой” дозы веса 70 кг. 

Статьи, которые вдохновили меня:

Melamed, K.H., Santos, M., Oliveira, R.K.F. et al. Unexplained exertional intolerance associated with impaired systemic oxygen extraction. Eur J Appl Physiol 119, 2375–2389 (2019). https://doi.org/10.1007/s00421-019-04222-6

Richards RS, Roberts TK, McGregor NR, Dunstan RH, Butt HL. Blood parameters indicative of oxidative stress are associated with symptom expression in chronic fatigue syndrome. Redox Rep. 2000;5(1):35-41. doi: 10.1179/rer.2000.5.1.35. PMID: 10905542.

Saha et. al. (2019) Red blood cell deformability is diminished in patients with Chronic Fatigue Syndrome. Clinical Hemorheology and Microcirculation, vol. 71, no. 1, pp. 113-116, 2019. DOI: 10.3233/CH-180469

Может ли пищевой кетоз быть способом уменьшить нейровоспаление? (пересказ обзора исследований)

Вчера я нашла статью, в которой мне захотелось покопаться подробнее. Она опубликована в 2020 г. в журнале “Европейская психиатрия” (официальном журнале Европейской психиатрической ассоциации) и называется “Пищевой кетоз как вмешательство, способное уменьшить астроглиоз: перспективы лечения нейродегенеративных заболеваний и нейропсихиатрических синдромов”. 

Это большой обзор биологических механизмов воздействия пищевого кетоза на мозг (при подготовке обзора использованы 347 источников).

Что известно:

Пищевой кетоз достигается разными способами, в частности

 ⁃ добавлением в рацион среднецепочечных жирных кислот

 ⁃ добавлением в рацион кокосового масла

 ⁃ радикальным снижением количества углеводов

 ⁃ сужением “пищевого окна” и голоданием

 ⁃ кетогенная диета стимулирует мозговой трофический фактор (BDNF)

 ⁃ кетогенная диета часто помогает при эпилепсии (причем как детям, так и взрослым)

 ⁃ есть положительные результаты при применении кетогенной диеты на ранних стадиях деменции, в т.ч. при болезни Альцгеймера

 ⁃ есть указания на возможную пользу кетогенной диеты при болезни Паркинсона, шизофрении, биполярном расстройстве и расстройствах аутистического спектра

На пациентах с клинической депрессией (MDD) исследований нет, но авторы предполагают, что снижение уровня воспаления и повышение секреции BDNF за счет диеты будет иметь антидепрессивный эффект (по аналогии с механизмами работы антидепрессантов). 

Как именно работает пищевой кетоз в мозге:

 ⁃ Кетоновые тела представляют собой эффективно используемое топливо для клеток, в том числе для клеток мозга, что особенно важно, когда в клетках формируется инсулинорезистентность и нарушается метаболизм глюкозы (что показано при болезни Альцгеймера, БАС, болезни Паркинсона, хорее Хантингтона, шизофрении, биполярном расстройстве и депрессии).

 ⁃ Кетоновые тела синтезируются в печени и экспортируются во все органы, нуждающиеся в энергии. При повышении концентрации кетоновых тел в крови, они проходят через гематоэнцефалический барьер при помощи специальных транспортеров, синтезируемых клетками этого барьерного эпителия. При длительном пищевом кетозе синтез этих транспортеров увеличивается в 10 раз по сравнению с состоянием вне кетоза, и кетоновые тела составляют 60-70% источников энергии мозга. 

 ⁃ Пищевой кетоз снижает окислительный стресс, снижает воспаление и улучшает функции митохондрий. Эта триада симптомов нарушает нормальное взаимодействие между нейронами, астроцитами и клетками микроглии. Нарушение митохондриальной функции астроцитов и клеток микроглии особенно пагубно для здоровья мозга. 

 ⁃ Избыточное количество свободных радикалов в мозге индуцирует гиперреактивное дисфункциональное состояние астроцитов (астроглиоз). Именно развитие этого состояния является поворотным моментом, запускающим нейропсихиатрические синдромы и нейродегенеративные заболевания. Поэтому астроциты сейчас оказываются основной мишенью терапевтического воздействия.

 ⁃ При кетозе повышается количество АТФ в мозге, количество митохондрий и продуктивность митохондрий (как в нейронах, так и в клетках глии), снижается количество свободных радикалов и укрепляется защита клеток эндогенными антиоксидантами (и в астроцитах это происходит интенсивнее, чем в нейронах); снижается уровень нейровоспаления; лучше поддерживается гомеостаз мозга.

В понятии “гомеостаз мозга” выделяются четыре уровня:

 ⁃ метаболический гомеостаз (формирование контактов между сосудами (кровеносными и лимфатическими) и клетками ЦНС; функционирование гематоэнцефалического барьера; регуляция кровотока и снабжения мозга кислородом; метаболическая поддержка нейронов);

 ⁃ нейронно-сетевой гомеостаз (развитие нейронных сетей и цепей; синаптическая пластичность; синаптогенез; обрезка ненужных синапсов);

 ⁃ молекулярный гомеостаз (вода, калий, кальций, аденозин, нейротрансмиттеры (в первую очередь глютамат и ГАМК));

 ⁃ системный гомеостаз (сон/бодрствование; оценка состояния системы рецепторами к CO2, pH, Na+, глюкозе).

Астроглиоз — гиперреактивное состояние астроцитов, развивающееся в ответ на даже небольшие отклонения биохимических характеристик мозга от гомеостаза. В частности, астроглиоз провоцируется воспалительными цитокинами, большим количеством свободных радикалов и липополисахаридами (элементами клеточной стенки патогенных бактерий, проникающими в кровоток из кишечника). При астроглиозе астроциты не могут полноценно выполнять свои функции (обеспечение нейронов кислородом и питательными веществами, поддержание гомеостаза ионов, “уборка” продуктов метаболизма). Наиболее пагубным является изменение структуры астроцитов (меньше “ножек”/ протрузий, которыми астроцит соприкасается с сосудами и с нейронами); также при астроглиозе повышается проницаемость гематоэнцефалического барьера (что еще больше нарушает гомеостаз мозга), и нарушается работа цикла преобразования глютамата в глютамин (что умеют делать только астроциты; в результате возникает эксайтотоксичность из-за избытка глютамата в мозге). 

Кетоновые тела (а также антиоксиданты и полиненасыщенные жирные кислоты) нормализуют работу натрий-калиевых насосов в клеточных мембранах (базовый механизм транспорта веществ в клетку и из нее, а также поддержания разности потенциалов). 

Именно астроциты перерабатывают жирные кислоты в кетоновые тела, чтобы снабжать ими нейроны при малом поступлении глюкозы в мозг. Кетоновые тела ограничивают синтез глютамата в нейронах и астроцитах (это может еще происходить в результате изменения кишечного микробиома под воздействием кетогенной диеты). 

Изменение кишечного микробиома под воздействием кетогенной диеты влияет на количество эндогенных короткоцепочечных жирных кислот и на проницаемость кишечного эпителия (при снижении проницаемости кишечного эпителия уменьшается периферическое воспаление). Бета-гидроксибутират (наиболее часто встречающееся кетоновое тело) непосредственно оказывает противовоспалительное воздействие. 

Morris G, Maes M, Berk M, Carvalho AF, Puri BK (2020). Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. European Psychiatry, 63(1), e8, 1–21 https://doi.org/10.1192/j.eurpsy.2019.13

О чем мы можем узнать из книги Ли Ноу “Эгоистичная митохондрия”?

Вторая книга про митохондрии, которую я нашла при поверхностном поиске, в русском переводе называется “Эгоистичная митохондрия” (…ну почему, почему эгоистичная?!!). Если переводить название с английского, не выпендриваясь, получится “Митохондрии и будущее медицины” (издана в 2018 г). 

Эта книга очень хороша для тех, кто не учил в школе или университете цитологию и основы молекулярной биологии (или учил, но подзабыл), кто готов погрызть гранит науки и кому интересно, что конкретно происходит в митохондриях при производстве энергии, регуляции “клеточного самоубийства” (апоптоза), при избытке свободных радикалов, при гипоксии, при неоптимальном питании, при различных заболеваниях и т.п. Если вы хотите разобраться, что такое метаболизм, как меняются процессы производства энергии при разном уровне физической нагрузки — в этой книге вы найдете для себя множество ответов (и вопросов, которые, возможно, не приходили вам в голову). 

Автор, доктор Ноу (…”обратите внимание, дети, это говорящая фамилия” ? (с) – Know) очень подробно и с понятными иллюстративными сравнениями рассказывает о сложных биологических механизмах. Он пересказывает основные идеи из книги Ника Лэйна “Энергия, секс, самоубийство: митохондрии и смысл жизни” (так, что, похоже, ее целиком можно после этого не читать :)). 

В том числе он рассказывает о митохондриальной гипотезе старения Э.Линана, объясняющей, почему люди одного хронологического возраста имеют разный биологический возраст. 

Во второй части книги автор рассказывает о роли и биологических механизмах дисфункции митохондрий в развитии таких заболеваний, как 

 ⁃ болезнь Альцгеймера

 ⁃ болезнь Паркинсона

 ⁃ депрессия

 ⁃ СДВГ

 ⁃ фибромиалгия, миалгический энцефаломиелит (поствирусный синдром) и синдром хронической усталости

 ⁃ диабет

В том числе, он пишет о биологических механизмах развития митохондриальной дисфункции как последствия приема различных лекарственных препаратов (таких, как барбитураты, аспирин, диклофенак, индометацин, парацетамол, кортикостероиды, тетрациклин, Ксанакс, диазепам (Валиум), литий, антидепрессанты, противосудорожные, нейролептики, химиотерапевтические препараты (в т.ч. доксорубицин), статины и секвестранты желчных кислот, лекарства от деменции (Такрин, Реминил), метформин, препараты от ВИЧ, лекарства от болезни Паркинсона). 

(это я дочитала до 212-й страницы; продолжение следует; очень любопытно, что д-р Ноу напишет не только про “кто виноват”, но и про “что делать”). 

Что говорит доктор Терри Валс о роли митохондрий в хронических заболеваниях?

“Нельзя вот просто так взять и” (с) за один день раскрыть тему митохондрий ? Поэтому я на ней некоторое время неторопливо потопчусь. Сегодня расскажу немного про доктора Терри Валс.

Помните, мы с вами несколько недель назад обсуждали, какие есть идеи, “от чего все болезни”, если рассматривать организм на разных уровнях, от молекулярного до политически-государственного и ценностно-смыслового? Там на молекулярном уровне была гипотеза, что “все болезни от” окислительного стресса, а на внутриклеточном, что “все болезни от” дисфункции митохондрий. 

Вообще некоторые авторы высказывают достаточно радикальную мысль, что в принципе “хроническая болезнь/старение” (состояние, противоположное здоровью/ оптимальному функционированию) — во многих частных случаях разных диагнозов имеет в своей основе общие биологические механизмы. А конкретный путь реализации этого механизма определяется тем, где в организме слабое звено, заданное сочетанием генетической предрасположенности и средовых условий. Я не имею мнения по поводу истинности этого высказывания, но я понимаю амбициозные попытки авторов найти, так сказать, отмычку, подходящую ко всем замкам. 

К чему я это? К тому, что с идеей о роли митохондрий в развитии разных заболеваний я познакомилась несколько лет тому назад, читая книгу доктора Терри Валс о ее протоколе нефармакологического лечения аутоиммунных заболеваний. Она пишет: “Дисфункция начинается на внутриклеточном уровне. Средовые условия (например, доступность питательных веществ) меняются так, что в каких-то областях организма митохондрии начинают функционировать неоптимально; они не только не производят достаточно энергии, они еще не подают больным и дисфункциональным клеткам сигнал “пора заканчивать”; еще они производят слишком много свободных радикалов и инициируют избыточный иммунный ответ. Когда не умирают дисфункциональные клетки, мы наблюдаем развитие дисфункции в тканях, органах и системах органов. Когда дело доходит до органов и систем, только на этом этапе медицина пытается сориентироваться и поставить диагноз. Но процесс начался гораздо раньше, и начался он с того, что митохондриям чего-то важного не хватило”. 

Сама доктор Валс пришла к этому выводу, пытаясь разобраться, как она может вылечить себя от рассеянного склероза. У нее была вторичная прогрессирующая форма РС, и как хороший аллопатический врач, она принимала фармакологическую терапию, но, к сожалению, ей не помогало. Она была вынуждена перемещаться в моторизованной наклонной инвалидной коляске. Тогда она решила поставить над собой клинический эксперимент и составила для себя рацион лечебного питания, физиотерапии и работы с психологическими состояниями. Если все началось с того, что митохондриям чего-то важного не хватило, то надо попробовать им это дать в достаточном количестве. Тогда они выйдут из “режима экономии”, произведут новые митохондрии и избавятся от старых и дисфункциональных; соответственно, в клетке станет больше доступной энергии, все прочие внутриклеточные системы смогут работать более свободно, наладятся регуляторные процессы. И как процесс болезни развивался от внутриклеточного уровня до уровня органов и тканей, так и процесс выздоровления будет развиваться аналогичным образом. (И скорость его будет зависеть, в целом, от того, насколько быстро обновляются клетки в тех или иных органах; например, в среднем мы получаем совершенно новую печень за 5 месяцев, а новую микроглию за 12.)

Ее идея была такова, что питательные вещества надо получать по возможности из еды, а не из капсул. Поэтому она рассчитала, сколько чего ей нужно есть. Через три месяца после начала эксперимента она ходила с палкой, через четыре — без палки, потом смогла ездить на велосипеде и верхом (… вот тут я офигеваю, потому что я знаю многих людей, у которых и без рассеянного склероза способность удерживать равновесие в седле лошади или велосипеда минимальна). 

Сейчас она проводит клинические исследования этого нутрициологического протокола.

Вот видео выступления доктора Валс на TEDx, потому что, мне кажется, интересно посмотреть на человека, который сумел неплохо поработать мозгом даже тогда, когда в мозге шла активная демиелинизация. 

Только ли в нейротрансмиттерах дело, когда речь идет о депрессии?

Только ли в нейротрансмиттерах дело, когда речь идет о депрессии?

Какие еще гипотезы о биологических механизмах депрессии существуют? И, главное, что это значит для нас?

Вот несколько гипотез:

1. Моноаминовая гипотеза (эта уже упомянута выше). Если депрессия сопровождается разрегулированностью путей производства, метаболизма и всасывания серотонина, дофамина и норадреналина, то, возможно, для преодоления и профилактики депрессии нужно оптимизировать нейротрансмиттеры.  Вопрос, каким образом это можно сделать, помимо фармакологического. 

    2. Гомоцистеиновая гипотеза (у людей с депрессией уровень аминокислоты гомоцистеина в крови выше, чем у людей без депрессии, и чем старше человек, тем более заметна разница). Гомоцистеин токсичен для нейронов. Высокий уровень гомоцистеина бывает связан с нарушениями процессов метилирования, обусловленными полиморфизмами гена MTHFR. В таком случае рекомендуется прием активированных (метилированных) витаминов группы В. 

    3. Воспалительная гипотеза (у людей с депрессией количество воспалительных цитокинов больше, чем у людей без депрессии). В таком случае важно понять, что вызывает и поддерживает воспаление, и по возможности устранить его причину. 

    4. Гипотеза дисбактериоза (у людей с депрессией, по данным некоторых исследований, иной состав микробиома, по сравнению с людьми без депрессии, и это может создавать условия для хронического воспаления). Опираясь на эту гипотезу, одним из путей преодоления и профилактики депрессии будет являться движение в сторону восстановления оптимального микробиома.

    5. Гипотеза митохондриальной дисфункции (показана связь депрессии и нарушения внутриклеточного производства энергии). Соответственно, если опираться на эту гипотезу, то для преодоления и профилактики депрессии важно по возможности восстановить оптимальную работу митохондрий. 

ГОМОЦИСТЕИНОВАЯ ГИПОТЕЗА

Гомоцистеин — серосодержащая аминокислота, образующаяся в организме человека при метаболизме метионина. Уровень гомоцистеина может служить показателем функционального дефицита фолиевой кислоты и витамина В12. Также гомоцистеин получается при метаболизации дофамина. У пациентов, проходящих лечение от болезни Паркинсона препаратом L-dopa, уровень гомоцистеина в крови в среднем на 31% выше, чем у пациентов, не проходящих лечение этим препаратом.

Повышение уровня гомоцистеина обусловлено сочетанием различных генетических предрасположенностей и средовых факторов, из которых самую заметную роль играют дефицит витаминов В2 (рибофлавин), В6 (пиридоксин), В9 (фолиевая кислота) и В12 (кобаламин). Дефицит этих витаминов объясняет 67% дисперсии по уровню гомоцистеина. Другие факторы — это возраст, принадлежность к мужскому полу, а также полиморфизм генов, отвечающих за процессы метилирования. В случае аутоиммунных заболеваний показано наличие во многих случаях полиморфизма генов, отвечающих за процессы метилирования.

Повышенный уровень гомоцистеина является фактором риска развития сердечно-сосудистых заболеваний (в том числе инфаркта, инсульта, микроинсульта, атеросклероза, тромбоза и васкулита), а также деменции (в т.ч. болезни Альцгеймера) и депрессии. При уровне гомоцистеина больше или равном 14 микромоль/ литр риск сердечно-сосудистых заболеваний вдвое выше, чем у людей, у которых уровень гомоцистеина ниже 14 микромоль/литр.

Гомоцистеин негативно влияет на функционирование клеток эндотелия (эпителия сосудов). Одним из следствий этого влияния оказывается повышенное артериальное давление.

Высокий уровень гомоцистеина пагубно влияет на желудочно-кишечный тракт, а также на здоровье костей.

В высоких концентрациях гомоцистеин токсичен для клеток нервной системы, в частности, для клеток черной субстанции, но не только. Он нарушает функционирование митохондрий, вызывает эксайтотоксичность и апоптоз (смерть) клеток, а также блокирует процессы нейрогенеза (генерации новых нервных клеток).

Опосредующим механизмом гомоцистеиновой токсичности является выделение свободных радикалов (особенно при сниженной защитной активности антиоксидантов).

На мышах было показано, что высокий уровень гомоцистеина приводит к снижению концентрации дофамина в дофаминэргических областях мозга. [5]

Повышенная концентрация гомоцистеина повышает вероятность депрессии на 26%.

У трети пациентов с депрессией наблюдается выраженный дефицит фолиевой кислоты (и, соответственно, повышенный уровень гомоцистеина). Эти пациенты хуже всего реагируют на терапию депрессии антидепрессантами. Поэтому важно проверять уровень гомоцистеина при начале терапии антидепрессантами. [4]

Показано, что адьювантные терапии , направленные на снижение уровня гомоцистеина ( в том числе высокодозные терапии метилированными витаминами В, а также использование бетаина (триметилглицина) в качестве дополнительного метильного донора), относительно эффективны для профилактики рецидивов некоторых сердечно-сосудистых заболеваний (но несколько менее эффективны, чем предсказывала теоретическая модель).

Показано, что депрессия, вместе с уровнем гомоцистеина, уменьшается при прочих равных условиях у пожилых людей, получавших дополнительный белок, витамины группы В и микронутриенты. [3]

У больных болезнью Паркинсона, при прочих равных условиях, бОльшая физическая нагрузка была связана с более низким уровнем гомоцистеина.

(1) Rogers JD, Sanchez-Saffon A, Frol AB, Diaz-Arrastia R. Elevated Plasma Homocysteine Levels in Patients Treated With Levodopa: Association With Vascular Disease. Arch Neurol. 2003;60(1):59–64. doi:https://doi.org/10.1001/archneur.60.1.59)

(2) Kevin L. Schalinske, Anne L. Smazal, Homocysteine Imbalance: a Pathological Metabolic Marker, Advances in Nutrition, Volume 3, Issue 6, November 2012, Pages 755–762, https://doi.org/10.3945/an.112.002758

(3) Salah Gariballa, Testing homocysteine-induced neurotransmitter deficiency, and depression of mood hypothesis in clinical practice, Age and Ageing, Volume 40, Issue 6, November 2011, Pages 702–705, https://doi.org/10.1093/ageing/afr086

(4) Bottiglieri T, Laundy M, Crellin R, et al Homocysteine, folate, methylation, and monoamine metabolism in depression Journal of Neurology, Neurosurgery & Psychiatry 2000;69:228-232.

(5) Nivedita Bhattacharjee, Rajib Paul, AnirudhaGiri, Anupom Borah. Chronic exposure of homocysteine in mice contributes to dopamine loss by enhancing oxidative stress in nigrostriatum and produces behavioral phenotypes of Parkinson’s disease. Biochemistry and Biophysics Reports, Volume 6, July 2016, Pages 47-53 https://doi.org/10.1016/j.bbrep.2016.02.013

ГИПОТЕЗА МИТОХОНДРИАЛЬНОЙ ДИСФУНКЦИИ

Митохондриальная дисфункция проявляется в:

1. Нехватке энергии для обеспечения оптимальной жизнедеятельности клеток;
2. Избыточном производстве свободных радикалов;
3. Нарушении внутриклеточного баланса кальция (между цитозолем и митохондриями); избыточное накопление кальция запускает процессы апоптоза клеток.

Иногда митохондриальная дисфункция проявляется не только и не столько в сбоях молекулярных процессов внутри митохондрий, но и в том, что новых/ молодых митохондрий в принципе становится меньше, а жизненный цикл их растягивается, т.е. старые/ менее функциональные митохондрии не устраняются. Иногда митохондриальная дисфункция в нейронах проявляется в том, что они неравномерно распределяются внутри клетки (в теле нейронов их оказывается больше, чем в аксонах). В аксонах митохондрии перемещаются в те места, где будет образовываться синапс. В аксонах концентрация митохондрий примерно вдвое больше, чем в дендритах.

Нарушение митохондриальной функции бывает вызвано сочетанием генетической предрасположенности и средовых факторов, из которых главную роль играет хронический стресс. Важно отметить, что воздействие стресса на митохондриальную функцию связано с природой стресса и с его длительностью. Присутствие гормонов стресса в незначительном количестве является нейропротектором за счет оптимизации митохондриальной функции, тогда как высокие концентрации гормонов стресса нейротоксичны.

Важно также, что симптомы митохондриальной дисфункции могут проявляться при статистически нормальном количестве митохондрий, но при повышенном “спросе” на продукты их жизнедеятельности. Мозгу требуется примерно в 20 раз больше энергии, чем другим тканям организма (того же веса). Проведение нервного импульса, особенно для функции поддержания ритмов (пейсмейкера), требует больших энергетических затрат. Нейрон коры головного мозга в состоянии покоя потребляет до 4,7 миллиардов молекул АТФ в секунду.

Дофаминэргические нейроны особенно уязвимы по отношению к митохондриальным стрессорам.
У дофаминэргических нейронов огромное количество синапсов (например, один дофаминэргический нейрон из черной субстанции мозга крысы может устанавливать синаптические контакты с 75000 нейронов в полосатом теле, а самих синапсов может быть 245000). Дофаминэргические нейроны в черной субстанции человека еще масштабнее — каждый нейрон может образовывать до 2,4 миллиона синапсов, а суммарная длина отростков его аксона может составлять 4,5 метра. При этом эти аксоны не миелинизированы, так что там происходит потеря энергии при передаче импульса.

Митохондрии играют важную роль в процессах нейропластичности. Митохондриальная дисфункция ведет к нарушению нейропластичности. Митохондриальная дисфункция может играть роль в нарушениях процессов нейрогенеза в гиппокампе при депрессии. Показано, что у пациентов с депрессией уменьшается утилизация глюкозы в префронтальной коре, передней поясной (цингулярной) коре и в хвостатом ядре. (2)

Мозг — один из органов, наиболее уязвимых по отношению к воздействию свободных радикалов, производимых митохондриями. В мозге много ненасыщенных жиров, которые под воздействием свободных радикалов перекисно окисляются. Чем выше в крови уровень малондиальдегида (показателя перекисного окисления липидов), тем более выражены симптомы депрессии.

При депрессии уровень производства энергии АТФ меньше, количество свободных радикалов выше, процессы апоптоза развиваются быстрее. Есть данные, что у некоторых больных депрессией нарушены процессы окислительного фосфорилирования.
Было обнаружено, что у больных депрессией снижена продукция АТФ не только в мозге, но и в мышечной ткани, а также в моноцитах в крови.

Показано, что при депрессии наблюдается пагубный эффект свободных радикалов в префронтальной коре. Также показана сниженная активность антиоксидантов и ферментов-антиоксидантов у людей, больных депрессией. Один из эффектов антидепрессантов — восстановление нормального уровня антиоксидантов.

Длительный стресс и высокий уровень кортизола являются депрессогенными факторами. Под воздействием высокого уровня глюкокортикоидов (в первую очередь кортизола), а также воспалительных цитокинов (в первую очередь фактора некроза опухоли- альфа и интерлейкина-6) происходит нарушение функций митохондрий. Воспалительные цитокины запускают в клетках каскад процессов, приводящий к апоптозу.
Хронический стресс также приводит к снижению количества антиоксидантов (в первую очередь глутатиона).
Уровень воспалительных цитокинов, а также показатель антиоксидантной функции, в крови пациентов с диагнозом “депрессия” могут служить биомаркером их возможного ответа на терапию антидепрессантами (чем выше уровень воспалительных цитокинов и чем ниже показатель антиоксидантной функции, тем, с определенной вероятностью, хуже будет ответ на терапию).

НУТРИЦИОЛОГИЧЕСКИЕ ВМЕШАТЕЛЬСТВА, РЕКОМЕНДУЕМЫЕ ДЛЯ КОРРЕКЦИИ МИТОХОНДРИАЛЬНОЙ ДИСФУНКЦИИ

Нутрициологические вмешательства для коррекции митохондриальной дисфункции включают в себя такие биодобавки, как креатин и коэнзим Q10, а также кетогенную диету.(1) Одним из направлений нутрициологического вмешательства при депрессии является дополнительное обеспечение организма антиоксидантами. (3)

У пациентов с депрессией, по сравнению со здоровыми людьми, снижен уровень витаминов А, С и Е в крови. Эксперимент с добавлением этих витаминов в рацион пациентов привел к снижению показателей депрессии по шкале HAM-D. Также хорошие результаты показало добавление в рацион антиоксиданта N-ацетилцистеина. Другие вещества, проходящие сейчас клинические исследования — это коэнзим Q10, куркумин и карнозин. (4)
На нутрициологической коррекции митохондриальной функции построен т.наз. “протокол д-ра Терри Валс”, проходящий сейчас различные клинические исследования.

(1) Haddad, D., & Nakamura, K. (2015). Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson’s disease. FEBS letters, 589(24 Pt A), 3702–3713. doi:10.1016/j.febslet.2015.10.021

(2) Bansal, Y., & Kuhad, A. (2016). Mitochondrial Dysfunction in Depression. Current neuropharmacology, 14(6), 610–618. doi:10.2174/1570159×14666160229114755

(3) Allen, J., Romay-Tallon, R., Brymer, K. J., Caruncho, H. J., & Kalynchuk, L. E. (2018). Mitochondria and Mood: Mitochondrial Dysfunction as a Key Player in the Manifestation of Depression. Frontiers in neuroscience, 12, 386. doi:10.3389/fnins.2018.00386

(4) Caruso, G., Benatti, C., Blom, J.M.C., Caraci, F., Taschedda, F. (2019). The Many Faces of Mitochondrial Dysfunction in Depression: From Pathology to Treatment. Front. Pharmacol., 10 September 2019