Похожи ли депрессивная фаза БАР и синдром хронической усталости?

Пока я перекапывала про биполярное расстройство (БАР), у меня возникла мысль: депрессивная фаза БАР чем-то похожа на синдром хронической усталости и миалгический энцефаломиелит (МЭ), или мне это только кажется?

Полезла рыть дальше, и нашла статью 2016 года. 

Что пишут:

У людей с МЭ чаще, чем в генеральной совокупности, встречаются психические расстройства (в частности, расстройства настроения встречаются чуть ли не в четыре раза чаще). Из психических расстройств при МЭ чаще всего можно наблюдать депрессию (в 80% случаев) и тревожные расстройства (в 63,8% случаев). Хронический болевой синдром ухудшает прогноз лечения психических расстройств и снижает вероятность ремиссии. Взаимоотношения между расстройствами настроения и МЭ выходят за пределы традиционного понимания коморбидности, потому что известно, что хроническая боль и депрессия усугубляют друг друга. 

Однако следует обратить внимание, что, возможно, упускается из вида частое со-присутствие МЭ и БАР. Вообще при БАР часто (примерно в каждом четвертом случае) есть хроническая боль. У людей с МЭ БАР встречается как минимум в пять раз чаще, чем в генеральной совокупности (по некоторым данным — в 25 раз чаще). 

Похоже, там есть общие биологические механизмы. И если допустить, что депрессия при МЭ чаще является депрессивной фазой БАР (где гипомания “смазана” или принимается за “норму”, “наконец-то я хорошо себя чувствую и могу много всего переделать”), то ее лечение как униполярной депрессии может быть неадекватным (т.е. антидепрессанты, годные для лечения униполярной депрессии, могут выводить человека в смешанные состояния, когда элементы мании соприсутствуют с элементами депрессии, а это может усиливать риск самоповреждающего поведения, вплоть до летального исхода). 

Показано, что среди людей с МЭ, у которых выявляются симптомы депрессии, примерно в трети случаев — это депрессивная фаза БАР, при этом у них симптомы депрессии более интенсивны, чем у людей с МЭ и униполярной депрессией. 

Схожесть симптомов МЭ и депрессивной фазы БАР может объясняться сходными паттернами изменений в структурах ЦНС, отвечающих за восприятие боли и регуляцию эмоций, а также сходными особенностями нарушения чувствительности оси гипоталамус-гипофиз-надпочечники, что может быть взаимосвязано с разрегулированностью функционирования как врожденного, так и клеточного иммунитета при МЭ и БАР. И в случае МЭ, и в случае БАР наблюдается хроническое воспаление и повышение уровня воспалительных цитокинов, нейровоспаление, метаболизм триптофана по кинурениновому пути (что ведет к снижению количества серотонина и мелатонина, и, соответственно, к нарушениям сна), нарушение функции митохондрий и высокий уровень окислительного стресса. При МЭ и в депрессивной фазе БАР наблюдается низкое, по сравнению с нормой, количество мозгового трофического фактора (BDNF). При МЭ часто наблюдается дефицит витамина D, при БАР его концентрация тоже часто отклоняется от нормы. 

Bortolato B, Berk M, Maes M, McIntyre RS, Carvalho AF. Fibromyalgia and Bipolar Disorder: Emerging Epidemiological Associations and Shared Pathophysiology. Curr Mol Med. 2016;16(2):119-36. doi: 10.2174/1566524016666160126144027. PMID: 26812920.

https://www.eurekaselect.com/138786/article

Что еще известно о нейроиммунологии биполярного расстройства? Что такое кинурениновый путь метаболизма триптофана?

Сегодня читала три статьи про нейроиммунологию биполярного расстройства, опубликованные в разных журналах в 2019-2020 году. Совершенно друг другу не противоречат ? (…было бы странно, если бы противоречили).

Вот основные тезисы.

При БАР выявляются:

 ⁃ дисфункция иммунной системы, в том числе повышенный уровень воспалительных цитокинов (как в маниакальной, так и в депрессивной фазе заболевания); чем выше уровень воспалительных цитокинов, тем хуже ответ на лечение нормотимиками при БАР и антидепрессантами при униполярной депрессии; (ну, что воспалительные цитокины вызывают депрессивные состояния, известно всем, у кого когда-либо что-то сильно воспалялось; а сейчас после знакомства с понятием “цитокинового шторма” это вообще мэйнстримное знание, насколько можно судить); но тут важен кинурениновый путь метаболизма триптофана, см.ниже;

 ⁃ повышенный уровень С-реактивного белка, особенно в маниакальной фазе; 

 ⁃ повышенное количество лейкоцитов;

 ⁃ повышенное количество нейтрофилов;

 ⁃ гиперактивность Т-лимфоцитов;

 ⁃ постоянная или периодическая повышенная проницаемость гематоэнцефалического барьера, которая может быть вызвана избыточной активацией клеток глии;

 ⁃ нарушения миелинизации нейронов, связанные, вероятно, с нарушением активности олигодендроцитов;

 ⁃ значительное количество локусов метилирования ДНК (это один из механизмов того, как наша биография становится биологией (причем не только нашей, но и потомков));

 ⁃ окислительный стресс и митохондриальная дисфункция, в частности, нарушен процесс “отбраковки” поврежденных участков митохондрий;

 ⁃ недостаточность трофических факторов ЦНС, при этом выявляется характерный для БАР полиморфизм гена, отвечающего за мозговой трофический фактор (BDNF);

 ⁃ нарушение чувствительности оси гипоталамус-гипофиз-надпочечники, избыточная секреция кортизола, уменьшение количества рецепторов к глюкокортикодам; при этом тут заметны колебания в зависимости от фазы болезни;

 ⁃ сбои/ сдвиги циркадианного ритма, связанные с нарушением секреции мелатонина; они, в свою очередь, способствуют “разбалансировке” иммунной системы и нарушению чувствительности оси гипоталамус-гипофиз-надпочечники;

 ⁃ в некоторых случаях БАР —  избыточное количество жировой ткани (особенно в области живота), которое само по себе является источником воспалительных цитокинов; при этом и гиподинамия в депрессивной фазе, и нарушение регуляции голода/насыщения при избыточном количестве кортизола, и представления о том, что мозг питается только глюкозой, способствуют избыточному поступлению углеводов и тем самым накоплению жировой ткани;

 ⁃ ускорение биологического старения.

Отдельное внимание уделяется кинурениновому пути метаболизма триптофана. В присутствии воспалительных цитокинов активируется фермент индоламин-2,3-диоксигеназа, преобразующий триптофан не в серотонин, а в кинуренин. Количество кинуренина положительно коррелирует с интенсивностью симптомов депрессии (как униполярной, так и депрессивной фазы БАР). 

Далее в клетках глии кинуренин превращается в астроцитах в кинуреновую кислоту, а в клетках микроглии — в гидроксикинуренин и хинолиновую кислоту (которые способствуют активации рецепторов в клеточной мембране, которые закачивают в клетку избыточное количество кальция. Из-за этого, в частности, в клетках мозга нарушается функция митохондрий, производится избыточное количество свободных радикалов и синтезируются воспалительные цитокины. Кинуреновая кислота в какой-то степени выступает как нейропротектор, но когда ее слишком много, это может сопровождаться психотическими симптомами.

Ну и, соответственно, когда триптофан преобразован в кинуренин, на синтез серотонина и далее мелатонина его не хватает. Но если просто добавить триптофана, толку мало, т.е. будет больше кинуренина. 

Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, et al. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. Braz J Psychiatry. 2020;42:536-551. http://dx.doi.org/10.1590/1516-4446-2019-0732

Benedetti, F., Aggio, V., Pratesi, M. L., Greco, G., & Furlan, R. (2020). Neuroinflammation in Bipolar Depression. Frontiers in psychiatry, 11, 71. https://doi.org/10.3389/fpsyt.2020.00071

Niu, Z., Yang, L., Wu, X., Zhu, Y., Chen, J., & Fang, Y. (2019). The Relationship Between Neuroimmunity and Bipolar Disorder: Mechanism and Translational Application. Neuroscience bulletin, 35(4), 595–607. https://doi.org/10.1007/s12264-019-00403-7

Что сопутствует сезонному аффективному расстройству?

Читать Сатчина Панду стало мне скучновато, очень он повторяется к середине книги и, как это принято в рамках американской уважительности к читателю популярной литературы, все разжевывает до состояния “жидкой кашицы”. И пошла я, и набрала в Пабмеде волшебное слово “хронопсихиатрия”. 

И, естественно, выпали мне тут же материалы про сезонное аффективное расстройство и терапию ярким светом (и сочетание терапии ярким светом с терапевтической депривацией сна при лечении биполярного расстройства). 

Но сейчас не об этом. 

Зацепило меня вот что. Вот есть сезонное аффективное расстройство. Как начинается короткий световой день (…или если стоит неделями пасмурная погода), некоторые люди начинают страдать этим самым расстройством: ничего им не интересно особо, драйва нет, мало что радует, в голове туман, плюс большая часть этих людей начинает больше спать, больше есть (особенно простых углеводов) и набирать вес. 

При этом большая часть этих людей — женщины (их в 3-5 раз больше, чем мужчин). И у половины этих женщин дисфорическая форма ПМС (“всех убью, одна останусь”). 

Мне в связи с этим очень интересно, естественно, а что у них изначально с печенью и с микробиомом, и есть ли у них хронические воспалительные заболевания или просто повышенный уровень факторов воспаления. В статьях про хронопсихиатрию я этих данных пока не встретила, но понятно, куда копать дальше. 

При чем тут воспаление? Известно, что главный наш циркадианный гормон — это мелатонин. А делается он из чего? Из серотонина. А серотонин делается (преимущественно бактериями в кишечнике) из триптофана, но если при этом присутствует большое количество воспалительных цитокинов, кое-что меняется, и из триптофана получается не серотонин, а кинуренин. Интересно было бы посмотреть, что у людей с сезонным аффективным расстройством с уровнем воспаления, и меняется ли настроение и психическое состояние именно в их случае, если уменьшить воспаление. 

Про печень и дисфорический ПМС. Это, скорее, на почве ограниченного количества наблюдений за собой и женщинами, разделявшими со мной жизненное пространство: если что-то специально делать, чтобы помочь процессам детоксификации в печени (особенно второй фазы детоксификации), то ПМС вообще не возникает, да и наступление менструальной фазы оказывается гораздо менее мучительным. 

А вам что опыт подсказывает, особенно если у вас есть сезонное аффективное расстройство? Очень любопытно, что, помимо световой терапии и антидепрессантов, помогает вам справляться?

Только ли в нейротрансмиттерах дело, когда речь идет о депрессии?

Только ли в нейротрансмиттерах дело, когда речь идет о депрессии?

Какие еще гипотезы о биологических механизмах депрессии существуют? И, главное, что это значит для нас?

Вот несколько гипотез:

1. Моноаминовая гипотеза (эта уже упомянута выше). Если депрессия сопровождается разрегулированностью путей производства, метаболизма и всасывания серотонина, дофамина и норадреналина, то, возможно, для преодоления и профилактики депрессии нужно оптимизировать нейротрансмиттеры.  Вопрос, каким образом это можно сделать, помимо фармакологического. 

    2. Гомоцистеиновая гипотеза (у людей с депрессией уровень аминокислоты гомоцистеина в крови выше, чем у людей без депрессии, и чем старше человек, тем более заметна разница). Гомоцистеин токсичен для нейронов. Высокий уровень гомоцистеина бывает связан с нарушениями процессов метилирования, обусловленными полиморфизмами гена MTHFR. В таком случае рекомендуется прием активированных (метилированных) витаминов группы В. 

    3. Воспалительная гипотеза (у людей с депрессией количество воспалительных цитокинов больше, чем у людей без депрессии). В таком случае важно понять, что вызывает и поддерживает воспаление, и по возможности устранить его причину. 

    4. Гипотеза дисбактериоза (у людей с депрессией, по данным некоторых исследований, иной состав микробиома, по сравнению с людьми без депрессии, и это может создавать условия для хронического воспаления). Опираясь на эту гипотезу, одним из путей преодоления и профилактики депрессии будет являться движение в сторону восстановления оптимального микробиома.

    5. Гипотеза митохондриальной дисфункции (показана связь депрессии и нарушения внутриклеточного производства энергии). Соответственно, если опираться на эту гипотезу, то для преодоления и профилактики депрессии важно по возможности восстановить оптимальную работу митохондрий. 

ГОМОЦИСТЕИНОВАЯ ГИПОТЕЗА

Гомоцистеин — серосодержащая аминокислота, образующаяся в организме человека при метаболизме метионина. Уровень гомоцистеина может служить показателем функционального дефицита фолиевой кислоты и витамина В12. Также гомоцистеин получается при метаболизации дофамина. У пациентов, проходящих лечение от болезни Паркинсона препаратом L-dopa, уровень гомоцистеина в крови в среднем на 31% выше, чем у пациентов, не проходящих лечение этим препаратом.

Повышение уровня гомоцистеина обусловлено сочетанием различных генетических предрасположенностей и средовых факторов, из которых самую заметную роль играют дефицит витаминов В2 (рибофлавин), В6 (пиридоксин), В9 (фолиевая кислота) и В12 (кобаламин). Дефицит этих витаминов объясняет 67% дисперсии по уровню гомоцистеина. Другие факторы — это возраст, принадлежность к мужскому полу, а также полиморфизм генов, отвечающих за процессы метилирования. В случае аутоиммунных заболеваний показано наличие во многих случаях полиморфизма генов, отвечающих за процессы метилирования.

Повышенный уровень гомоцистеина является фактором риска развития сердечно-сосудистых заболеваний (в том числе инфаркта, инсульта, микроинсульта, атеросклероза, тромбоза и васкулита), а также деменции (в т.ч. болезни Альцгеймера) и депрессии. При уровне гомоцистеина больше или равном 14 микромоль/ литр риск сердечно-сосудистых заболеваний вдвое выше, чем у людей, у которых уровень гомоцистеина ниже 14 микромоль/литр.

Гомоцистеин негативно влияет на функционирование клеток эндотелия (эпителия сосудов). Одним из следствий этого влияния оказывается повышенное артериальное давление.

Высокий уровень гомоцистеина пагубно влияет на желудочно-кишечный тракт, а также на здоровье костей.

В высоких концентрациях гомоцистеин токсичен для клеток нервной системы, в частности, для клеток черной субстанции, но не только. Он нарушает функционирование митохондрий, вызывает эксайтотоксичность и апоптоз (смерть) клеток, а также блокирует процессы нейрогенеза (генерации новых нервных клеток).

Опосредующим механизмом гомоцистеиновой токсичности является выделение свободных радикалов (особенно при сниженной защитной активности антиоксидантов).

На мышах было показано, что высокий уровень гомоцистеина приводит к снижению концентрации дофамина в дофаминэргических областях мозга. [5]

Повышенная концентрация гомоцистеина повышает вероятность депрессии на 26%.

У трети пациентов с депрессией наблюдается выраженный дефицит фолиевой кислоты (и, соответственно, повышенный уровень гомоцистеина). Эти пациенты хуже всего реагируют на терапию депрессии антидепрессантами. Поэтому важно проверять уровень гомоцистеина при начале терапии антидепрессантами. [4]

Показано, что адьювантные терапии , направленные на снижение уровня гомоцистеина ( в том числе высокодозные терапии метилированными витаминами В, а также использование бетаина (триметилглицина) в качестве дополнительного метильного донора), относительно эффективны для профилактики рецидивов некоторых сердечно-сосудистых заболеваний (но несколько менее эффективны, чем предсказывала теоретическая модель).

Показано, что депрессия, вместе с уровнем гомоцистеина, уменьшается при прочих равных условиях у пожилых людей, получавших дополнительный белок, витамины группы В и микронутриенты. [3]

У больных болезнью Паркинсона, при прочих равных условиях, бОльшая физическая нагрузка была связана с более низким уровнем гомоцистеина.

(1) Rogers JD, Sanchez-Saffon A, Frol AB, Diaz-Arrastia R. Elevated Plasma Homocysteine Levels in Patients Treated With Levodopa: Association With Vascular Disease. Arch Neurol. 2003;60(1):59–64. doi:https://doi.org/10.1001/archneur.60.1.59)

(2) Kevin L. Schalinske, Anne L. Smazal, Homocysteine Imbalance: a Pathological Metabolic Marker, Advances in Nutrition, Volume 3, Issue 6, November 2012, Pages 755–762, https://doi.org/10.3945/an.112.002758

(3) Salah Gariballa, Testing homocysteine-induced neurotransmitter deficiency, and depression of mood hypothesis in clinical practice, Age and Ageing, Volume 40, Issue 6, November 2011, Pages 702–705, https://doi.org/10.1093/ageing/afr086

(4) Bottiglieri T, Laundy M, Crellin R, et al Homocysteine, folate, methylation, and monoamine metabolism in depression Journal of Neurology, Neurosurgery & Psychiatry 2000;69:228-232.

(5) Nivedita Bhattacharjee, Rajib Paul, AnirudhaGiri, Anupom Borah. Chronic exposure of homocysteine in mice contributes to dopamine loss by enhancing oxidative stress in nigrostriatum and produces behavioral phenotypes of Parkinson’s disease. Biochemistry and Biophysics Reports, Volume 6, July 2016, Pages 47-53 https://doi.org/10.1016/j.bbrep.2016.02.013

ГИПОТЕЗА МИТОХОНДРИАЛЬНОЙ ДИСФУНКЦИИ

Митохондриальная дисфункция проявляется в:

1. Нехватке энергии для обеспечения оптимальной жизнедеятельности клеток;
2. Избыточном производстве свободных радикалов;
3. Нарушении внутриклеточного баланса кальция (между цитозолем и митохондриями); избыточное накопление кальция запускает процессы апоптоза клеток.

Иногда митохондриальная дисфункция проявляется не только и не столько в сбоях молекулярных процессов внутри митохондрий, но и в том, что новых/ молодых митохондрий в принципе становится меньше, а жизненный цикл их растягивается, т.е. старые/ менее функциональные митохондрии не устраняются. Иногда митохондриальная дисфункция в нейронах проявляется в том, что они неравномерно распределяются внутри клетки (в теле нейронов их оказывается больше, чем в аксонах). В аксонах митохондрии перемещаются в те места, где будет образовываться синапс. В аксонах концентрация митохондрий примерно вдвое больше, чем в дендритах.

Нарушение митохондриальной функции бывает вызвано сочетанием генетической предрасположенности и средовых факторов, из которых главную роль играет хронический стресс. Важно отметить, что воздействие стресса на митохондриальную функцию связано с природой стресса и с его длительностью. Присутствие гормонов стресса в незначительном количестве является нейропротектором за счет оптимизации митохондриальной функции, тогда как высокие концентрации гормонов стресса нейротоксичны.

Важно также, что симптомы митохондриальной дисфункции могут проявляться при статистически нормальном количестве митохондрий, но при повышенном “спросе” на продукты их жизнедеятельности. Мозгу требуется примерно в 20 раз больше энергии, чем другим тканям организма (того же веса). Проведение нервного импульса, особенно для функции поддержания ритмов (пейсмейкера), требует больших энергетических затрат. Нейрон коры головного мозга в состоянии покоя потребляет до 4,7 миллиардов молекул АТФ в секунду.

Дофаминэргические нейроны особенно уязвимы по отношению к митохондриальным стрессорам.
У дофаминэргических нейронов огромное количество синапсов (например, один дофаминэргический нейрон из черной субстанции мозга крысы может устанавливать синаптические контакты с 75000 нейронов в полосатом теле, а самих синапсов может быть 245000). Дофаминэргические нейроны в черной субстанции человека еще масштабнее — каждый нейрон может образовывать до 2,4 миллиона синапсов, а суммарная длина отростков его аксона может составлять 4,5 метра. При этом эти аксоны не миелинизированы, так что там происходит потеря энергии при передаче импульса.

Митохондрии играют важную роль в процессах нейропластичности. Митохондриальная дисфункция ведет к нарушению нейропластичности. Митохондриальная дисфункция может играть роль в нарушениях процессов нейрогенеза в гиппокампе при депрессии. Показано, что у пациентов с депрессией уменьшается утилизация глюкозы в префронтальной коре, передней поясной (цингулярной) коре и в хвостатом ядре. (2)

Мозг — один из органов, наиболее уязвимых по отношению к воздействию свободных радикалов, производимых митохондриями. В мозге много ненасыщенных жиров, которые под воздействием свободных радикалов перекисно окисляются. Чем выше в крови уровень малондиальдегида (показателя перекисного окисления липидов), тем более выражены симптомы депрессии.

При депрессии уровень производства энергии АТФ меньше, количество свободных радикалов выше, процессы апоптоза развиваются быстрее. Есть данные, что у некоторых больных депрессией нарушены процессы окислительного фосфорилирования.
Было обнаружено, что у больных депрессией снижена продукция АТФ не только в мозге, но и в мышечной ткани, а также в моноцитах в крови.

Показано, что при депрессии наблюдается пагубный эффект свободных радикалов в префронтальной коре. Также показана сниженная активность антиоксидантов и ферментов-антиоксидантов у людей, больных депрессией. Один из эффектов антидепрессантов — восстановление нормального уровня антиоксидантов.

Длительный стресс и высокий уровень кортизола являются депрессогенными факторами. Под воздействием высокого уровня глюкокортикоидов (в первую очередь кортизола), а также воспалительных цитокинов (в первую очередь фактора некроза опухоли- альфа и интерлейкина-6) происходит нарушение функций митохондрий. Воспалительные цитокины запускают в клетках каскад процессов, приводящий к апоптозу.
Хронический стресс также приводит к снижению количества антиоксидантов (в первую очередь глутатиона).
Уровень воспалительных цитокинов, а также показатель антиоксидантной функции, в крови пациентов с диагнозом “депрессия” могут служить биомаркером их возможного ответа на терапию антидепрессантами (чем выше уровень воспалительных цитокинов и чем ниже показатель антиоксидантной функции, тем, с определенной вероятностью, хуже будет ответ на терапию).

НУТРИЦИОЛОГИЧЕСКИЕ ВМЕШАТЕЛЬСТВА, РЕКОМЕНДУЕМЫЕ ДЛЯ КОРРЕКЦИИ МИТОХОНДРИАЛЬНОЙ ДИСФУНКЦИИ

Нутрициологические вмешательства для коррекции митохондриальной дисфункции включают в себя такие биодобавки, как креатин и коэнзим Q10, а также кетогенную диету.(1) Одним из направлений нутрициологического вмешательства при депрессии является дополнительное обеспечение организма антиоксидантами. (3)

У пациентов с депрессией, по сравнению со здоровыми людьми, снижен уровень витаминов А, С и Е в крови. Эксперимент с добавлением этих витаминов в рацион пациентов привел к снижению показателей депрессии по шкале HAM-D. Также хорошие результаты показало добавление в рацион антиоксиданта N-ацетилцистеина. Другие вещества, проходящие сейчас клинические исследования — это коэнзим Q10, куркумин и карнозин. (4)
На нутрициологической коррекции митохондриальной функции построен т.наз. “протокол д-ра Терри Валс”, проходящий сейчас различные клинические исследования.

(1) Haddad, D., & Nakamura, K. (2015). Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson’s disease. FEBS letters, 589(24 Pt A), 3702–3713. doi:10.1016/j.febslet.2015.10.021

(2) Bansal, Y., & Kuhad, A. (2016). Mitochondrial Dysfunction in Depression. Current neuropharmacology, 14(6), 610–618. doi:10.2174/1570159×14666160229114755

(3) Allen, J., Romay-Tallon, R., Brymer, K. J., Caruncho, H. J., & Kalynchuk, L. E. (2018). Mitochondria and Mood: Mitochondrial Dysfunction as a Key Player in the Manifestation of Depression. Frontiers in neuroscience, 12, 386. doi:10.3389/fnins.2018.00386

(4) Caruso, G., Benatti, C., Blom, J.M.C., Caraci, F., Taschedda, F. (2019). The Many Faces of Mitochondrial Dysfunction in Depression: From Pathology to Treatment. Front. Pharmacol., 10 September 2019