Что думает доктор Белл о биологических механизмах развития синдрома хронической усталости (и, в частности, поствирусного синдрома)?

Книга доктора Дэвида Белла “Клеточная гипоксия и нейроиммунная усталость” тоже посвящена синдрому хронической усталости (СХУ) (и в частности, поствирусному синдрому). Она маленькая, но очень насыщенная. Я пока прочитала примерно половину.

Что в ней доктор Белл повторяет, в сравнении с предыдущей книгой:

  • при синдроме хронической усталости  (и поствирусном синдроме) не работает привычный медицинский подход “отписать пациента к врачу-специалисту в соответствии с наиболее выраженными симптомами”;
  • пациенты с этим симптомом часто оказываются маргинализованы и стигматизированы (…якобы они симулируют и хотят получить пенсию по инвалидности, тогда как все их проблемы “от головы”, – что, конечно, неправда);
  • СХУ может развиваться у людей с генетической предрасположенностью после того, как система доходит до предела своей аллостатической нагрузки и получает какой-то дополнительный триггер (чаще всего это инфекция, в первую очередь вирусная, но может быть и черепно-мозговая травма, и отравление тяжелыми металлами или пестицидами, и т.д. и т.п.).

Соответственно, что пока что я вычитала в этой книге нового, по сравнению с предыдущей:

  • Доктор Белл заявляет, что если биологический механизм проблемы не локализуется в дисфункции какого-то конкретного органа или системы органов, его надо искать на другом уровне (в данном случае, внутриклеточном). 
  • Он видит основную проблему при СХУ в нарушении производства энергии в клетках, то есть в работе митохондрий; при этом больше всего страдают те органы, которые более всего нуждаются в энергии. Процесс производства энергии очень сложен и нарушен может быть в любом месте, поэтому так трудно разработать простой анализ чего-нибудь одного, чтобы сразу стало все понятно. 
  • При этом важный аспект производства энергии — это достаточное обеспечение клеток кислородом. Поэтому доктор Белл постулирует в качестве важнейшего условия, нарушающего производство энергии в клетке, клеточную гипоксию (которая отличается от других видов гипоксии (помните, я писала про нарушения центральной регуляции дыхания, способность эритроцитов к деформации, а также метгемоглобин), но может присутствовать одновременно с любыми из них). 
  • Он формулирует гипотезу, что симптомы СХУ связаны с нарушениями функционирования иммунной системы (нарушением регуляции производства (и своевременной остановки производства) воспалительных цитокинов), а также с накоплением в клетках избыточного количества оксида азота (NO) и токсичных сопутствующих продуктов его производства. Именно это обуславливает три основные группы симптомов СХУ: (1) проблемы с кровеносными сосудами, проявляющиеся, в частности, в головокружениях и ортостатической постуральной тахикардии, (2) снижение порога чувствительности к разной сенсорной стимуляции, включая болевые ощущения; (3) усталость, бессилие. Также одним из побочных эффектов является нарушение свертываемости крови (по типу тромбоза). 
  • Проблемой чаще всего является не инфекция-триггер, а то, что вовремя не останавливается каскад производства воспалительных цитокинов. Доктор Белл цитирует исследование, в котором выраженность усталости коррелировала с концентрацией интерферона-гамма и фактора некроза опухоли-альфа. В каких-то случаях можно наблюдать ситуацию, когда инфекция была, организм ее устранил, а цитокиновый каскад продолжился уже независимо от инфекции; в каких-то случаях организм устранил инфекцию не полностью и продолжает с ней бороться, но не очень эффективно. Разница в том, что во втором случае будет иметь смысл бороться с инфекцией (вирусной, бактериальной и т.п.), а в первом от этого не будет эффекта. Доктор Белл настаивает на том, что тщательное обследование необходимо, если болезнь, вызванная инфекцией, не проходит за 3-4 недели. 
  • Он пишет о том, что синдром хронической усталости стараются дифференцировать от рассеянного склероза, т.к. они на вид могут быть похожи настолько, что трудно отличить одно от другого без исследований нарушений миелинизации. Нет ли тут общих механизмов и общих способов поддерживающей терапии, задумывается доктор Белл. (…И это напоминает мне о докторе Терри Валс с ее протоколом питания, электростимуляции, письменных практик и т.п. — ДК)

завтра продолжим.

Как возникает синдром хронической усталости (по мнению Дэвида Белла)?

Продолжаю читать книгу доктора Белла про синдром хронической усталости и дисфункции иммунной системы (СХУДИС). 

Что сегодня обратило на себя мое внимание:

“Не существует четкой границы между “нормальными” проявлениями хронического стресса, с одной стороны, и болезнью, с другой. Нет критериев, по которым мы могли бы сказать: “так, вот до этого момента проявления интенсивности конкретного симптома это еще не болезнь, а вот с этого уже болезнь””. (Обычно диагноз СХУ ставится на основе длительности симптомов, степени инвалидизации и на основе исключения всех иных возможных диагнозов; доктор Белл говорит, что такой способ несправедлив по отношению к больному человеку.)

***

Доктор Белл описывает фазы адаптации к жизни с болезнью, не обозначая их как таковые (…этому посвящена книга Патрисии Феннелл, изданная почти на двадцать лет позже, чем эта книга доктора Белла. – ДК). Он пишет: “Первые шесть месяцев, в течение которых симптомы “гриппа” или иного недомогания не проходят, —  это время кризиса и турбулентности”. У кого-то дебют болезни связан с какой-то остро и тяжело протекавшей инфекцией, и можно точно сказать: “вот с чего все началось”. У кого-то, напротив, если и была в начале какая-то инфекция, то она протекала легко и малозаметно, или вообще бессимптомно. Но все же важно помнить, что неясно, действительно ли инфекция, вирус и т.п. послужила триггером для последующего развития поствирусного синдрома, или она “села” на уже существующую готовую “почву” дисфункции иммунной системы и стала “последней соломинкой, сломавшей спину верблюда”. 

Доктор Белл пишет, что очень хорошие наблюдатели за своим состоянием — спортсмены, участвующие в соревнованиях. Некоторые из его пациентов с СХУДИС, как раз спортсмены, отмечали, что у них несколько изменились результаты и самоощущение во время тренировок (за несколько недель до инфекции-триггера СХУДИС) — стал возникать дискомфорт в мышцах и усталость. Поэтому доктор Белл задается вопросом: “Да, мы знаем, что часто “поствирусный синдром” возникает после вируса, но виноват ли именно этот конкретный вирус? Может быть, если бы человек в момент Х не заболел этим вирусом, его свалило бы через неделю что-то другое?” “Проверить и доказать, – пишет доктор Белл, – я это не могу, но я подозреваю, что там есть какое-то сочетание факторов, которое обуславливает “уязвимое состояние” организма к развитию СХУДИС. А дальше можно человека ударить по голове, или дать ему соприкоснуться с какими-то химикатами, или подвергнуть хирургической операции, или сделать ему прививку, — и любое из этих воздействий может запустить процесс развития СХУДИС”. 

Обычно СХУДИС имеет ремиттирующий характер (бывают периоды ремиссий и обострений), но примерно у 30% пациентов, которых наблюдал доктор Белл, таких колебаний состояния не было, состояние было равномерно плохим или постепенно ухудшающимся. Как правило, у тех, у кого симптомы не проходили в течение 3 месяцев, они сохранялись и через 6 месяцев после возникновения. Количество случаев спонтанной устойчивой ремиссии неизвестно. Триггеры обострения могут быть очень разными. 

Главный симптом СХУДИС — отсутствие энергии, “нет сил”. Доктор Белл говорит, что видит этому две основные причины: митохондриальные нарушения и нейровоспаление. Хронический болевой синдром, сопровождающий СХУДИС, он связывает с нарушениями работы автономной нервной системы.

До 97% пациентов с СХУДИС страдают от неврологических и/ или нейропсихиатрических симптомов. Самые распространенные, после головных болей, — когнитивные нарушения: проблемы с концентрацией внимания, кратковременной памятью, вспоминанием слов, действиями, требующими “высокоуровневого” мышления (самоорганизация, планирование, принятие решений, творческий синтез), а также расстройства настроения и нарушения эмоциональной регуляции. На это надстраиваются негативные заключения о собственной идентичности и чувство личностной несостоятельности. Но важно помнить, пишет доктор Белл, что это не “личностные” проблемы, это результат органических нарушений в мозге, что-то там воспалилось и поломалось, но это совершенно не значит, что мы из-за этого стали “хуже как личность”. Депрессия — одна из коморбидностей при СХУДИС, но СХУДИС не сводится к депрессии.

Будучи клиницистом “старой школы”, доктор Белл подробно описывает характерные для СХУДИС симптомы, которые внимательный врач может увидеть при осмотре пациента, и о которых он может узнать, задав конкретные вопросы (например, про особенности позывов к мочеиспусканию). 

дальше буду читать, что доктор Белл пишет про СХУДИС у детей (вот этого у доктора Майхилл, по-моему, не было). продолжение следует.

Что еще известно о нейроиммунологии биполярного расстройства? Что такое кинурениновый путь метаболизма триптофана?

Сегодня читала три статьи про нейроиммунологию биполярного расстройства, опубликованные в разных журналах в 2019-2020 году. Совершенно друг другу не противоречат ? (…было бы странно, если бы противоречили).

Вот основные тезисы.

При БАР выявляются:

 ⁃ дисфункция иммунной системы, в том числе повышенный уровень воспалительных цитокинов (как в маниакальной, так и в депрессивной фазе заболевания); чем выше уровень воспалительных цитокинов, тем хуже ответ на лечение нормотимиками при БАР и антидепрессантами при униполярной депрессии; (ну, что воспалительные цитокины вызывают депрессивные состояния, известно всем, у кого когда-либо что-то сильно воспалялось; а сейчас после знакомства с понятием “цитокинового шторма” это вообще мэйнстримное знание, насколько можно судить); но тут важен кинурениновый путь метаболизма триптофана, см.ниже;

 ⁃ повышенный уровень С-реактивного белка, особенно в маниакальной фазе; 

 ⁃ повышенное количество лейкоцитов;

 ⁃ повышенное количество нейтрофилов;

 ⁃ гиперактивность Т-лимфоцитов;

 ⁃ постоянная или периодическая повышенная проницаемость гематоэнцефалического барьера, которая может быть вызвана избыточной активацией клеток глии;

 ⁃ нарушения миелинизации нейронов, связанные, вероятно, с нарушением активности олигодендроцитов;

 ⁃ значительное количество локусов метилирования ДНК (это один из механизмов того, как наша биография становится биологией (причем не только нашей, но и потомков));

 ⁃ окислительный стресс и митохондриальная дисфункция, в частности, нарушен процесс “отбраковки” поврежденных участков митохондрий;

 ⁃ недостаточность трофических факторов ЦНС, при этом выявляется характерный для БАР полиморфизм гена, отвечающего за мозговой трофический фактор (BDNF);

 ⁃ нарушение чувствительности оси гипоталамус-гипофиз-надпочечники, избыточная секреция кортизола, уменьшение количества рецепторов к глюкокортикодам; при этом тут заметны колебания в зависимости от фазы болезни;

 ⁃ сбои/ сдвиги циркадианного ритма, связанные с нарушением секреции мелатонина; они, в свою очередь, способствуют “разбалансировке” иммунной системы и нарушению чувствительности оси гипоталамус-гипофиз-надпочечники;

 ⁃ в некоторых случаях БАР —  избыточное количество жировой ткани (особенно в области живота), которое само по себе является источником воспалительных цитокинов; при этом и гиподинамия в депрессивной фазе, и нарушение регуляции голода/насыщения при избыточном количестве кортизола, и представления о том, что мозг питается только глюкозой, способствуют избыточному поступлению углеводов и тем самым накоплению жировой ткани;

 ⁃ ускорение биологического старения.

Отдельное внимание уделяется кинурениновому пути метаболизма триптофана. В присутствии воспалительных цитокинов активируется фермент индоламин-2,3-диоксигеназа, преобразующий триптофан не в серотонин, а в кинуренин. Количество кинуренина положительно коррелирует с интенсивностью симптомов депрессии (как униполярной, так и депрессивной фазы БАР). 

Далее в клетках глии кинуренин превращается в астроцитах в кинуреновую кислоту, а в клетках микроглии — в гидроксикинуренин и хинолиновую кислоту (которые способствуют активации рецепторов в клеточной мембране, которые закачивают в клетку избыточное количество кальция. Из-за этого, в частности, в клетках мозга нарушается функция митохондрий, производится избыточное количество свободных радикалов и синтезируются воспалительные цитокины. Кинуреновая кислота в какой-то степени выступает как нейропротектор, но когда ее слишком много, это может сопровождаться психотическими симптомами.

Ну и, соответственно, когда триптофан преобразован в кинуренин, на синтез серотонина и далее мелатонина его не хватает. Но если просто добавить триптофана, толку мало, т.е. будет больше кинуренина. 

Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, et al. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. Braz J Psychiatry. 2020;42:536-551. http://dx.doi.org/10.1590/1516-4446-2019-0732

Benedetti, F., Aggio, V., Pratesi, M. L., Greco, G., & Furlan, R. (2020). Neuroinflammation in Bipolar Depression. Frontiers in psychiatry, 11, 71. https://doi.org/10.3389/fpsyt.2020.00071

Niu, Z., Yang, L., Wu, X., Zhu, Y., Chen, J., & Fang, Y. (2019). The Relationship Between Neuroimmunity and Bipolar Disorder: Mechanism and Translational Application. Neuroscience bulletin, 35(4), 595–607. https://doi.org/10.1007/s12264-019-00403-7

Как у людей с шизофренией и БАР обстоят дела с митохондриями?

В новый год с обнимку с митохондриями ? в смысле, я прочитала 9 статей про особенности (дис)функции митохондрий при биполярном расстройстве и шизофрении.

В двух словах: есть явные проблемы с митохондриями, которые возможно компенсировать, используя как психотропные препараты, так и (или) другие вмешательства, оптимизирующие функцию митохондрий. Мне кажется, это имеет отношение и к нынешнему вирусу, про который известно, что он выбирает своей мишенью митохондрии. 

Желающие погрызть гранит науки, добро пожаловать ? 

Что уже знала к моменту чтения:

 ⁃ пока не существует биомаркеров, которые бы могли помочь предсказать, какие лекарства помогут какому пациенту (подбор осуществляется методом проб и наблюдения за соотношением положительного результата и отрицательных побочных эффектов); было бы реально круто, если бы такие биомаркеры были; 

 ⁃ работа митохондрий, эффективное производство энергии, регуляция внутриклеточной концентрации кальция и подвижность митохондрий крайне важны для клеток мозга, потому что синаптогенез и обусловленная им нейропластичность — крайне энергоемкие процессы;

 ⁃ дизрегуляция концентрации кальция и дисфункция митохондрий взаимно обусловливают друг друга; 

 ⁃ выделение нейротрансмиттеров и их обратный захват — также энергоемкие процессы, и функция митохондрий влияет и на них;

 ⁃ чтобы образовывались синапсы и выделялись нейротрансмиттеры, нужно, чтобы митохондрии внутри клеток были достаточно подвижными; высокая концентрация кальция и АДФ в клетке снижает подвижность митохондрий;

 ⁃ неоптимальная работа митохондрий приводит к окислительному стрессу — свободные радикалы окисляют все, что им попадается (ДНК и РНК, липиды, белки);

 ⁃ большая часть свободных радикалов выделяется при работе первого комплекса (особенно при нехватке коэнзима Q10); для их нейтрализации нужно достаточное количество антиоксидантов, производимых преимущественно самой клеткой;

 ⁃ хроническое воспаление повышает проницаемость митохондриальных мембран для свободных радикалов;

 ⁃ гипоксия ведет к повышению выделения свободных радикалов митохондриями; 

 ⁃ выделение свободных радикалов митохондриями — “заразный” процесс, одни митохондрии могут индуцировать другие;

 ⁃ окисление липидов, составляющих миелиновые оболочки отростков нейронов, ведет к нарушениям электрической проводимости и проблемам с передачей нервных импульсов;

 ⁃ для того, чтобы синтезировать и собрать воедино белки, составляющие комплексы передачи электронов в митохондриальной мембране, требуется участие как митохондриальной ДНК, так и ядерной ДНК;

 ⁃ митохондрии могут сливаться друг с другом и разделяться на более мелкие; процессы слияния помогают повышать эффективность производства энергии, процессы деления помогают отбраковывать поврежденные участки митохондриальных мембран;

 ⁃ митохондрии, будучи поврежденными, производят массу воспалительных цитокинов;

 ⁃ митохондрии при определенных условиях запускают процесс клеточной смерти (апоптоза).

Что узнала, чего раньше не знала:

 ⁃ и у пациентов с шизофренией, и у пациентов с биполярным расстройством обнаруживаются митохондриальные дисфункции (много разных вариантов);

 ⁃ если сравнивать пациентов и здоровых людей, у пациентов обнаруживаются отклонения в нескольких параметрах, связанных с функциями митохондрий; включая малую способность потреблять кислород, увеличенную утечку протонов и изменение концентрации разных белков, регулирующих функции митохондрий и их взаимодействие с клеткой в целом; 

 ⁃ при этом те же проблемы с митохондриями у многих пациентов можно обнаружить в лейкоцитах, лимфоцитах и тромбоцитах, а не только в нейронах, что гораздо удобнее для исследований и выработки диагностических маркеров;

 ⁃ при шизофрении наблюдаются изменения в метаболизме некоторых участков мозга (там отличается концентрация глюкозы, креатинфосфата и АТФ, при этом есть корреляция между концентрацией этих веществ и выраженностью редуктивной симптоматики);

 ⁃ у пациентов с биполярным расстройством и шизофренией в мозге более высокая, чем у здоровых, концентрация молочной кислоты, что указывает на то, что процессы окислительного фосфорилирования у них неэффективны и клетки прибегают к гликолизу как способу производства энергии; 

 ⁃ наиболее заметны у пациентов с шизофренией и биполярным расстройством нарушения работы первого комплекса передачи электронов (именно там образуется большая часть свободных радикалов); 

 ⁃ при этом у пациентов с биполярным расстройством нарушения работы первого комплекса достаточно типичны внутри группы (и связаны именно с нарушением передачи электронов), в то время как у пациентов с шизофренией нарушения работы первого комплекса самые разные;

 ⁃ у людей с митохондриальной дисфункцией как основным заболеванием, особенно с нарушением работы первого комплекса, достаточно часто наблюдаются симптомы, напоминающие психотические; 

 ⁃ в частности, биполярное расстройство возникает у них в 20 раз чаще, чем в выборке из генеральной совокупности; 

 ⁃ избыточная активность первого комплекса коррелирует с выраженностью продуктивной симптоматики при шизофрении; она заметно усиливается в острых состояниях;

 ⁃ митохондрии оказываются мишенью воздействия различных психотропных препаратов; некоторые препараты уменьшают количество потребляемого клеткой кислорода;

 ⁃ генетическая предрасположенность к биполярному расстройству и шизофрении может быть связана с мутациями в митохондриальной ДНК (что усиливает роль “наследования по материнской линии”); 

 ⁃ при этом наблюдается нарушение процессов слияния и разделения митохондрий у пациентов с шизофренией и биполярным расстройством; 

 ⁃ циклическая природа биполярного расстройства может объясняться колебанием в эффективности работы митохондрий (при (гипо)мании митохондрии работают гораздо быстрее, в результате получается “очень много энергии” и “очень много нейротрансмиттеров”); в том числе, это может быть связано с тем, что у людей с биполярным расстройством митохондрии в целом меньше по размеру, чем у здоровых; 

 ⁃ длительный (несколько лет) прием психотропных препаратов нормализует большую часть функций митохондрий (за исключением утечки протонов, которая у пациентов продолжает быть выше, что свидетельствует о том, что есть распаренность между комплексами передачи электронов и АТФ-синтазой и нарушения поддержания оптимального мембранного потенциала);

 ⁃ при шизофрении обнаруживаются дефекты белка, отвечающего за транспорт митохондрий внутри клетки; кроме того, что это уменьшает их подвижность, это еще не дает митохондриям эффективно секвестрировать кальций и ведет к повышению концентрации кальция в цитозоле; 

 ⁃ психотропные препараты, применяемые при шизофрении и биполярном расстройстве, влияют на концентрацию кальция; 

 ⁃ в частности, литий блокирует некоторые кальциевые каналы;

 ⁃ литий вообще может оптимизировать функцию митохондрий, но важна концентрация (слишком высокая концентрация лития угнетает функцию митохондрий) и важна специфика имеющихся митохондриальных дисфункций; 

 ⁃ вальпроевая кислота помогает регулировать концентрацию кальция, но оказывает сильное влияние на клеточный метаболизм, в том числе, делая аэробное дыхание менее эффективным как при использовании глюкозы, так и при использовании кетоновых тел в качестве топлива; 

 ⁃ оптимизации функции митохондрий у людей с биполярным расстройством сопутствует удлинение теломер (т.е. это противостоит одному из факторов биологического старения);

 ⁃ есть разница в некоторых метаболических параметрах между пациентами с униполярной депрессией и пациентами в депрессивной фазе биполярного расстройства, и эти параметры могут использоваться для дифференциальной диагностики; один из этих параметров — уровень мочевой кислоты (у людей с биполярным расстройством он бывает выше); также было обнаружено, что у людей с биполярным расстройством повышена активность первого комплекса (см.выше), а у людей с униполярной депрессией — не повышена; активность второго комплекса у всех людей с депрессией снижена по сравнению со здоровыми (…отсюда возможная польза янтарной кислоты? – ДК.); активность четвертого комплекса существенно снижена у людей с биполярным расстройством по сравнению с людьми с депрессией и здоровыми; также у людей с биполярным расстройством существенно снижена активность фермента цитратсинтазы. 

Bar-Yosef, T., Hussein, W., Yitzhaki, O., Damri, O., Givon, L., Marom, C., Gurman, V., Levine, J., Bersudsky, Y., Agam, G., & Ben-Shachar, D. (2020). Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: a proof of concept study. Scientific reports, 10(1), 12258. https://doi.org/10.1038/s41598-020-69207-4

Machado, A. K., Pan, A. Y., da Silva, T. M., Duong, A., & Andreazza, A. C. (2016). Upstream Pathways Controlling Mitochondrial Function in Major Psychosis: A Focus on Bipolar Disorder. Canadian journal of psychiatry. Revue canadienne de psychiatrie, 61(8), 446–456. https://doi.org/10.1177/0706743716648297

Bergman, O., & Ben-Shachar, D. (2016). Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes. Canadian journal of psychiatry. Revue canadienne de psychiatrie, 61(8), 457–469. https://doi.org/10.1177/0706743716648290

Kato T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr Res. 2017 Sep;187:62-66. doi: 10.1016/j.schres.2016.10.037. Epub 2016 Nov 10. PMID: 27839913.

M. ĽUPTÁK , J. HROUDOVÁ. Important Role of Mitochondria and the Effect of Mood Stabilizers on Mitochondrial Function.

Physiol. Res. 68 (Suppl. 1): S3-S15, 2019 

https://doi.org/10.33549/physiolres.934324

Cikánková T, Fišar Z, Hroudová J. In vitro effects of antidepressants and mood-stabilizing drugs on cell energy metabolism. Naunyn Schmiedebergs Arch Pharmacol. 2020 May;393(5):797-811. doi: 10.1007/s00210-019-01791-3. Epub 2019 Dec 19. PMID: 31858154.

Lundberg, M., Millischer, V., Backlund, L., Martinsson, L., Stenvinkel, P., Sellgren, C. M., Lavebratt, C., & Schalling, M. (2020). Lithium and the Interplay Between Telomeres and Mitochondria in Bipolar Disorder. Frontiers in psychiatry, 11, 586083. https://doi.org/10.3389/fpsyt.2020.586083

Zvěřová, M., Hroudová, J., Fišar, Z., Hansíková, H., Kališová, L., Kitzlerová, E., Lambertová, A., & Raboch, J. (2019). Disturbances of mitochondrial parameters to distinguish patients with depressive episode of bipolar disorder and major depressive disorder. Neuropsychiatric disease and treatment, 15, 233–240. https://doi.org/10.2147/NDT.S188964

Что известно о психонейроэндокриноиммунологии биполярного расстройства?

Вторая глава в книге “Вскрытие мозга. Нейробиология психических расстройств” посвящена биполярному расстройству. 

Что пишут:

 ⁃ при БАР нарушен метаболизм в разных участках мозга;

 ⁃  наблюдаются различные клеточные и молекулярные изменения, которые могут влиять на нейронные связи (нейровоспаление, окислительный стресс, апоптоз, митохондриальная дисфункция и др.). 

Пошла в Пабмед почитать, что пишут еще. 

Воспроизведенные эпидемиологические исследования показали, что БАР часто оказывается коморбидно воспалительным заболеваниям, включая аутоиммунные заболевания, хронические инфекции, сердечно-сосудистые заболевания и нарушения метаболизма. 

У пациентов с БАР чаще, чем в генеральной совокупности, встречаются такие заболевания, как хронический колит, системная красная волчанка, аутоиммунный тиреоидит, синдром Гийена-Барре, аутоиммунный гепатит, ревматоидный артрит, рассеянный склероз, псориаз, токсоплазмоз, герпес, цитомегаловирус, краснуха, подагра, диабет 2 типа, метаболический синдром, ожирение, нарушения жирового обмена, гипертония, атеросклероз, сосудистые явления (инфаркт, инсульт). 

При этом наличие хронических инфекций ухудшает когнитивные функции и прогноз развития заболевания. В частности, ученые из Тайваня (2) обнаружили, что хронический периодонтит повышает вероятность возникновения биполярного расстройства.

Присутствие подагры в качестве коморбидности указывает на нарушение обмена пуриновых оснований и накопление мочевой кислоты. В одном из исследований было показано, что такое лекарство от подагры, как аллопуринол, снижает выраженность маниакальных состояний при БАР. 

Уровень воспалительных цитокинов у некоторых людей с БАР повышен, а во время заметных изменений настроения повышен еще сильнее, что указывает на нарушения работы врожденного иммунитета. Для некоторых пациентов с БАР полезным оказывается лечение противовоспалительными препаратами. Ждем лонгитюдных исследований, которые смогут показать, связана ли концентрация цитокинов со сменой фазы заболевания, и если да, то каким образом. Цитокины воздействуют на пути синтеза моноаминов-нейротрансмиттеров, поэтому воздействие на процесс воспаления – “выше по течению” биохимических процессов в организме, чем воздействие на сами моноамины. В частности, цитокины воздействуют на глютаматэргические системы мозга, что ведет к нарушению работы кальциевых каналов, повышению концентрации кальция в клетках мозга, эксайтотоксичности и нарушениям нейропластичности. 

Дисфункция иммунной системы, воспалительные заболевания и БАР все могут взаимно влиять друг на друга. Современные исследования (3) обнаруживают, что одни и те же гены определяют как некоторые психические заболевания, так и расстройства иммунной системы. 

У пациентов с БАР наблюдается повышенный уровень окислительного стресса и дефицит антиоксидантов, что указывает на митохондриальную дисфункцию. 

Показано, что у пациентов с БАР нарушена регуляция секреции кортизола и часто присутствует повышенный уровень кортизола. 

Существует гипотеза, что переход заболевания из одной фазы в другую может быть спровоцирован изменениями в кишечном микробиоме. Описан клинический случай, когда маниакальное состояние пациента было купировано приемом активированного угля. 

вообще материалов по психонейроэндокриноиммунологии БАР довольно много, я пока их собираю и дальше буду рассказывать постепенно.

(1) Rosenblat, J. D., & McIntyre, R. S. (2017). Bipolar Disorder and Immune Dysfunction: Epidemiological Findings, Proposed Pathophysiology and Clinical Implications. Brain sciences, 7(11), 144. https://doi.org/10.3390/brainsci7110144

(2) Huang YK, Wang YH, Chang YC. Chronic Periodontitis Is Associated with the Risk of Bipolar Disorder: A Population-Based Cohort Study. Int J Environ Res Public Health. 2020 May 15;17(10):3466. doi: 10.3390/ijerph17103466. PMID: 32429260; PMCID: PMC7277490.

(3) Tylee DS, Sun J, Hess JL, Tahir MA, Sharma E, Malik R, Worrall BB, Levine AJ, Martinson JJ, Nejentsev S, Speed D, Fischer A, Mick E, Walker BR, Crawford A, Grant SFA, Polychronakos C, Bradfield JP, Sleiman PMA, Hakonarson H, Ellinghaus E, Elder JT, Tsoi LC, Trembath RC, Barker JN, Franke A, Dehghan A; 23 and Me Research Team; Inflammation Working Group of the CHARGE Consortium; METASTROKE Consortium of the International Stroke Genetics Consortium; Netherlands Twin Registry; neuroCHARGE Working Group; Obsessive Compulsive and Tourette Syndrome Working Group of the Psychiatric Genomics Consortium, Faraone SV, Glatt SJ. Genetic correlations among psychiatric and immune-related phenotypes based on genome-wide association data. Am J Med Genet B Neuropsychiatr Genet. 2018 Oct;177(7):641-657. doi: 10.1002/ajmg.b.32652. Epub 2018 Oct 16. PMID: 30325587; PMCID: PMC6230304.

Существует ли возможность диагностировать именно синдром хронической усталости каким-нибудь специфическим анализом крови?

Существует ли возможность диагностировать именно синдром хронической усталости каким-нибудь специфическим анализом крови?

Этому посвящен следующий раздел книги доктора Майхилл. Они с коллегами разработали тест, который им вроде бы показывает нарушения функции митохондрий. Было три публикации в журналах (в 2009-2012 гг). Дальше я пошла в Интернет искать и смотреть, и обнаружила, что семь лет спустя другая исследовательская группа совершила попытку воспроизвести результаты, попытка не удалась, они продолжают переругиваться, на форумах пациенты помогают друг другу интерпретировать результаты и пр., в общем, жизнь идет. Что из этого важно для нас? Что пока нет такого специального теста, чтоб человек мог прийти в лабораторию и сказать “мне профиль на патологию функции митохондрий при синдроме хронической усталости, пожалуйста”. В 2019 году был шум, что в Стэнфорде ученые, наконец, что-то открыли, но, покопавшись, снова трудно сказать что-то, кроме “дело ясное, что дело темное” и “что бы они там ни открыли, нам от этого сейчас ни тепло, ни холодно”.

Дальше д-р Майхилл пишет в книге, какие тесты еще нам могут быть полезны, но не поодиночке, а в комплексе. Вообще она сторонник персонализированного подхода и подбора лечения методом проб и наблюдения за реакцией пациента (что, возможно, во многом противоречит современному стандартному медицинскому доказательному подходу, но это отдельная огромная тема, в которую я не готова погружаться прямо сейчас). Когда-то врач, сказавшая  “мы так до конца и не понимаем, что это, никогда такого не видели за 40 лет практики, и у нас нет протокола для лечения этого, но давайте попробуем вот что и посмотрим, что получится”, спасла моему ребенку жизнь (потом уже несколько месяцев спустя генетический анализ подтвердил орфанное заболевание с частотой встречаемости именно в таком виде примерно 3 на миллион; но если бы тот врач тогда не решила рискнуть, ребенок бы точно умер). Поэтому я в силу личного опыта (не только описанного выше) поддерживаю идею экспертности пациента в отношении его собственного уникального организма, особенно в случае редких заболеваний или сочетания нескольких заболеваний (я видела человека с 15-ю разными диагнозами одновременно, кто больше?), и партнерского подхода к лечению, когда врач создает несколько гипотез, и дальше вместе с пациентом они проверяют эти гипотезы. Иногда “дедовские” методы диагностики и выявления слабого места по комплексу симптомов, без лабораторной диагностики, — это все, что у нас есть. Когда-то только это и было. Как говорил пожилой профессор в мединституте, когда училась моя бабушка (в 30-е годы прошлого века), “от больного натуральной оспой пахнет вспотевшим гусем”. К счастью, с тех пор не стало ни натуральной оспы (что прямо подвиг и памятник тому, что медицинские службы всего мира могут скоординироваться, если захотят), ни повода каждому знать, как пахнет “вспотевший гусь”. Но умение видеть комплексно и строить гипотезы осталось крайне важным. 

Дальше в книге Майхилл нас ждет раздел про еду и воспаление, и потом, наконец, про собственно поствирусный синдром.

Что делает людей предрасположенными к развитию синдрома хронической усталости? Что может послужить триггером?

Сегодняшний кусочек заметок по ходу чтения книги доктора Сары Майхилл* “Диагностика и лечение синдрома хронической усталости и миалгического энцефаломиелита” — про факторы, делающие человека предрасположенным к развитию СХУ, и про ситуации-триггеры, “ломающие спину верблюда”. 

Факторы, создающие условия для развития СХУ — это длительно присутствующие

 ⁃ химикаты в окружающей среде

 ⁃ большое количество стрессоров в жизни, в том числе длящаяся травматическая стрессовая ситуация (домашнее насилие, бедность, маргинализация по тому или иному признаку)

 ⁃ рацион питания с большим количеством простых углеводов; тут наблюдается порочный круг, т.к. у людей с синдромом хронической усталости нет энергии готовить, поэтому они часто едят блюда, требующие минимального вложения сил (типа бутербродов-макарон-полуфабрикатов-фастфуда), а они-то им как-раз и не полезны. 

 ⁃ проблемы со сном, включающие, в частности, нарушения циркадианного ритма (позднее засыпание); проблемы со сном, вызванные гипогликемией, связанной со сниженной метаболической гибкостью (способностью организма переключаться с глюкозы как топлива на другое топливо, в первую очередь жир), проявляется как исключительно яркие сны, интенсивное потение во сне и множественные пробуждения; проблемы со сном, связанные с апноэ (вызванным ожирением, аллергиями, а также отеками из-за гипофункции щитовидной железы)

 ⁃ избыток эстрогенов (из-за искусственного их введения (например, гормональных контрацептивов) и/или из-за сниженного их клиренса в печени)

 ⁃ сбои в работе “системы вознаграждения” в организме, ведущие к тому, что человек начинает зависеть от тех или иных веществ (начиная от сахара и заканчивая наркотиками)

 ⁃ пищевые непереносимости

 ⁃ митохондриальная дисфункция (в том числе наследственнаая)

 ⁃ гипофункция щитовидной железы

 ⁃ низкая кислотность желудка (гипохлоргидрия) и связанное с ней бактериальное зарастание тонкого кишечника

 ⁃ токсическая нагрузка на печень в результате приема массы лекарств, назначенных, чтобы купировать симптомы-последствия всего обозначенного выше

К индивидуальным предрасположенностям можно также отнести психологические  характеристики:

 ⁃ перфекционизм, суровая безжалостная самокритика, не дающие услышать сигналы организма и проявить по отношению к себе сочувствие и заботу

 ⁃ неспособность говорить людям “нет” (и иные формы проявления страха отвержения)

Старение, само собой, постепенно уменьшает нашу способность противостоять пагубному влиянию средовых факторов. 

Какими могут быть ситуации-триггеры, “соломинки, ломающие спину верблюда”? (здесь речь о том, что случилось достаточно внезапно и мощно, а не присутствовало до этого хронически) 

 1. Различные инфекции, сопровождающиеся симптомами, существующими для того, чтобы “сбросить” или уничтожить на месте часть патогенов и ослабить инфекционную нагрузку (кашель, насморк, температура, рвота, понос, температура); когда мы принимаем лекарства, которые подавляют симптомы и выдерживаем инфекцию “на ногах”, мы создаем для патогенов условия, в которых они могут хорошо устроиться; так острые инфекционные заболевания в некоторых случаях могут перейти в хроническую форму. 

Инфекции могут быть вирусные, бактериальные, грибковые и/или паразитические. 

 2.  Перегрузка печени теми или иными токсинами, среди которых могут быть:

 ⁃ Химические токсины (обычно их начинают подозревать после того, как все остальные гипотезы о причинах проверены)

 ⁃ Лекарства, напрямую влияющие на функцию митохондрий (бета-блокаторы, статины, антибиотики иногда)

 ⁃ Транквилизаторы, антипсихотики, антидепрессанты

 ⁃ Средства, используемые для общего наркоза

 ⁃ Различные продукты нарушенных процессов переваривания пищи в тонком кишечнике (когда там происходит брожение, например, и синтезируются различные спирты, токсичные газы, и т.п.), а также когда мы имеем дело с эндотоксинами, выделяемыми патогенными бактериями

 ⁃ Гормональный шторм в связи с изменением гормонального статуса (у женщин особенно это может быть спровоцировано такими состояниями, как беременность, роды и кормление, менопауза)

⁃ Токсины, выделяемые в кровоток из жировой ткани при интенсивном похудании 

У людей с синдромом хронической усталости часто неоптимально функционирует печень, поэтому она медленнее “разбирает” лекарства, в результате можно получить передозировку “нормальной дозой” лекарства (тут еще важно отметить, что “доза для взрослого человека” рассчитана на среднестатистического взрослого весом 70 кг, и если в результате болезни вы резко похудели (больше, чем на 10% массы тела), то количество получаемого лекарства (мг/кг), соответственно, увеличивается, если не пересчитана дозировка. – ДК). 

Печень перегружена различными токсинами еще и потому, что у нее недостаточно “детоксифицирующих средств” (витаминов, минералов, незаменимых жирных кислот, серы для производства глутатиона и пр.). 

 3. Активность иммунной системы в ответ на ту или иную провокацию (в том числе в некоторых случаях — в ответ на вакцинацию)

 4. Избыточная стрессовая нагрузка (физическая или эмоциональная, в т.ч. ПТСР, горе/утрата)

 5. Переход к “посменной работе”, ведущей к депривации сна (…в частности, спать вполуха, прислушиваясь к тому, как дышит заболевший родственник)

 6. Возросшее воздействие электромагнитных полей от различных приборов и сетей

 7. Возросшее постоянное шумовое загрязнение (стройка под окном, новые шумные соседи и пр.)

 8. В качестве отдельного фактора, который может спровоцировать хроническую иммунную активацию, доктор Майхилл описывает разные синтетические материалы, используемые для восстановительной и пластической хирургии, в первую очередь силикон. 

(продолжение следует)

*если вы будете гуглить доктора Майхилл на русском языке, вы обнаружите загадочное явление: первое издание книги доктора Майхилл на русском с указанием имени “Михаил Титов” в качестве первого автора. Вклад оного персонажа в книгу неясен, равно как и права на перевод “на его совести”, но если вы ее купите, деньги получит он. Я не стала покупать и не советую; но тут каждый сам решает в соответствии со своими убеждениями.

Может ли пищевой кетоз быть способом уменьшить нейровоспаление? (пересказ обзора исследований)

Вчера я нашла статью, в которой мне захотелось покопаться подробнее. Она опубликована в 2020 г. в журнале “Европейская психиатрия” (официальном журнале Европейской психиатрической ассоциации) и называется “Пищевой кетоз как вмешательство, способное уменьшить астроглиоз: перспективы лечения нейродегенеративных заболеваний и нейропсихиатрических синдромов”. 

Это большой обзор биологических механизмов воздействия пищевого кетоза на мозг (при подготовке обзора использованы 347 источников).

Что известно:

Пищевой кетоз достигается разными способами, в частности

 ⁃ добавлением в рацион среднецепочечных жирных кислот

 ⁃ добавлением в рацион кокосового масла

 ⁃ радикальным снижением количества углеводов

 ⁃ сужением “пищевого окна” и голоданием

 ⁃ кетогенная диета стимулирует мозговой трофический фактор (BDNF)

 ⁃ кетогенная диета часто помогает при эпилепсии (причем как детям, так и взрослым)

 ⁃ есть положительные результаты при применении кетогенной диеты на ранних стадиях деменции, в т.ч. при болезни Альцгеймера

 ⁃ есть указания на возможную пользу кетогенной диеты при болезни Паркинсона, шизофрении, биполярном расстройстве и расстройствах аутистического спектра

На пациентах с клинической депрессией (MDD) исследований нет, но авторы предполагают, что снижение уровня воспаления и повышение секреции BDNF за счет диеты будет иметь антидепрессивный эффект (по аналогии с механизмами работы антидепрессантов). 

Как именно работает пищевой кетоз в мозге:

 ⁃ Кетоновые тела представляют собой эффективно используемое топливо для клеток, в том числе для клеток мозга, что особенно важно, когда в клетках формируется инсулинорезистентность и нарушается метаболизм глюкозы (что показано при болезни Альцгеймера, БАС, болезни Паркинсона, хорее Хантингтона, шизофрении, биполярном расстройстве и депрессии).

 ⁃ Кетоновые тела синтезируются в печени и экспортируются во все органы, нуждающиеся в энергии. При повышении концентрации кетоновых тел в крови, они проходят через гематоэнцефалический барьер при помощи специальных транспортеров, синтезируемых клетками этого барьерного эпителия. При длительном пищевом кетозе синтез этих транспортеров увеличивается в 10 раз по сравнению с состоянием вне кетоза, и кетоновые тела составляют 60-70% источников энергии мозга. 

 ⁃ Пищевой кетоз снижает окислительный стресс, снижает воспаление и улучшает функции митохондрий. Эта триада симптомов нарушает нормальное взаимодействие между нейронами, астроцитами и клетками микроглии. Нарушение митохондриальной функции астроцитов и клеток микроглии особенно пагубно для здоровья мозга. 

 ⁃ Избыточное количество свободных радикалов в мозге индуцирует гиперреактивное дисфункциональное состояние астроцитов (астроглиоз). Именно развитие этого состояния является поворотным моментом, запускающим нейропсихиатрические синдромы и нейродегенеративные заболевания. Поэтому астроциты сейчас оказываются основной мишенью терапевтического воздействия.

 ⁃ При кетозе повышается количество АТФ в мозге, количество митохондрий и продуктивность митохондрий (как в нейронах, так и в клетках глии), снижается количество свободных радикалов и укрепляется защита клеток эндогенными антиоксидантами (и в астроцитах это происходит интенсивнее, чем в нейронах); снижается уровень нейровоспаления; лучше поддерживается гомеостаз мозга.

В понятии “гомеостаз мозга” выделяются четыре уровня:

 ⁃ метаболический гомеостаз (формирование контактов между сосудами (кровеносными и лимфатическими) и клетками ЦНС; функционирование гематоэнцефалического барьера; регуляция кровотока и снабжения мозга кислородом; метаболическая поддержка нейронов);

 ⁃ нейронно-сетевой гомеостаз (развитие нейронных сетей и цепей; синаптическая пластичность; синаптогенез; обрезка ненужных синапсов);

 ⁃ молекулярный гомеостаз (вода, калий, кальций, аденозин, нейротрансмиттеры (в первую очередь глютамат и ГАМК));

 ⁃ системный гомеостаз (сон/бодрствование; оценка состояния системы рецепторами к CO2, pH, Na+, глюкозе).

Астроглиоз — гиперреактивное состояние астроцитов, развивающееся в ответ на даже небольшие отклонения биохимических характеристик мозга от гомеостаза. В частности, астроглиоз провоцируется воспалительными цитокинами, большим количеством свободных радикалов и липополисахаридами (элементами клеточной стенки патогенных бактерий, проникающими в кровоток из кишечника). При астроглиозе астроциты не могут полноценно выполнять свои функции (обеспечение нейронов кислородом и питательными веществами, поддержание гомеостаза ионов, “уборка” продуктов метаболизма). Наиболее пагубным является изменение структуры астроцитов (меньше “ножек”/ протрузий, которыми астроцит соприкасается с сосудами и с нейронами); также при астроглиозе повышается проницаемость гематоэнцефалического барьера (что еще больше нарушает гомеостаз мозга), и нарушается работа цикла преобразования глютамата в глютамин (что умеют делать только астроциты; в результате возникает эксайтотоксичность из-за избытка глютамата в мозге). 

Кетоновые тела (а также антиоксиданты и полиненасыщенные жирные кислоты) нормализуют работу натрий-калиевых насосов в клеточных мембранах (базовый механизм транспорта веществ в клетку и из нее, а также поддержания разности потенциалов). 

Именно астроциты перерабатывают жирные кислоты в кетоновые тела, чтобы снабжать ими нейроны при малом поступлении глюкозы в мозг. Кетоновые тела ограничивают синтез глютамата в нейронах и астроцитах (это может еще происходить в результате изменения кишечного микробиома под воздействием кетогенной диеты). 

Изменение кишечного микробиома под воздействием кетогенной диеты влияет на количество эндогенных короткоцепочечных жирных кислот и на проницаемость кишечного эпителия (при снижении проницаемости кишечного эпителия уменьшается периферическое воспаление). Бета-гидроксибутират (наиболее часто встречающееся кетоновое тело) непосредственно оказывает противовоспалительное воздействие. 

Morris G, Maes M, Berk M, Carvalho AF, Puri BK (2020). Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. European Psychiatry, 63(1), e8, 1–21 https://doi.org/10.1192/j.eurpsy.2019.13

А как же таурин?

Читая вчера у доктора Ноу про поражение клеток при ишемии-реперфузии (когда сначала они страдают от кислородной недостаточности, а потом снова получают нормальное количество кислорода), я удивилась, что он не упомянул в качестве защитного фактора серосодержащую аминокислоту таурин. 

С этим скромным героем (в смысле, с таурином) я познакомилась несколько лет назад, когда рассматривала проблемы, с которыми сталкиваются люди, соблюдающие строгую веганскую диету (и по тем или иным причинам не едящие водоросли). Таурин — полунезаменимая аминокислота; то есть, в организме человека она синтезируется, но это энергоемкий и многоступенчатый процесс. Гораздо проще оказывается получить таурин с пищей или в виде добавки. 

Сейчас я думаю про таурин, опять же, в контексте того, что ковид атакует митохондрии, и, как мне кажется, важно знать про все, что может их защитить (как профилактически, так и после того, как организм уже столкнулся с вирусом). 

Поэтому мое сегодняшнее утреннее чтение было в Пабмеде в обнимку с ключевым словом “таурин”. Статей много, я просмотрела пока семь, но и это дает много полезной информации. 

Знакомьтесь: таурин.

Таурин встречается в высокой концентрации в тканях, получающих энергию посредством окислительных процессов, и в меньшей концентрации в тканях, получающих энергию посредством процессов гликолиза. Таурин играет важную роль в функции митохондрий; в клетках эта аминокислота локализуется именно в митохондриях. Наиболее высока концентрация таурина в мозге, сетчатке глаза, сердце и половых железах; также в существенном количестве он присутствует в скелетных мышцах. 

Мыши, не имеющие транспортера таурина, страдают от митохондриальной недостаточности. In vitro было показано, что добавление таурина ведет к тому, что при транскрипции митохондриальной ДНК в РНК получается меньше РНК с мутациями, характерными для митохондриального синдрома. 

Таурин помогает поддерживать оптимальный кислотно-щелочной баланс для функционирования митохондрий как “энергетических станций” клетки. Он защищает митохондрии от избыточного слияния и распада в ситуациях гипоксии-реперфузии (поэтому используется как протектор во время операций на сердце и мозге, а также для восстановления клеток мышечной ткани после гипоксии). Клетки, получившие дополнительный таурин, оказываются защищены от повреждения при последующем испытании гипоксией. 

Таурин является нейропротектором в ситуации ишемического инсульта. Также он играет важную роль в нейрогенезе и нейропластичности. 

Таурин обладает противовоспалительным действием за счет ап-регуляции синтеза противовоспалительного цитокина интерлейкина-10 (показано на ожоговых пациентах). 

При диабете наблюдается уменьшение концентрации таурина в плазме. Было показано, что добавление 1 г таурина приводило к статистически значимому повышению активности ферментов-антиоксидантов (супероксид-дисмутазы и каталазы), снижению уровня С-реактивного белка и фактора некроза опухоли-альфа по сравнению с плацебо. 

Таурин оказывает защитное действие на стенки сосудов; нормализует работу ренин-ангиотензиновой системы; снижает инсулинорезистентность; повышает уровень адипонектина.

Таурин модулирует иммунный ответ (причем как будучи принятым профилактически, так и после острого поражения легких (исследование на крысах)).

Таурин снижает уровень арахидоновой кислоты в плазме крови (она повышает вероятность тромбоза). 

Таурин содержится в высокой концентрации в водорослях (существенно выше, чем во всем остальном), рыбе, моллюсках, и в несколько меньшей — в мясе животных и птиц, и в яйцах. 

Qaradakhi, T., Gadanec, L. K., McSweeney, K. R., Abraham, J. R., Apostolopoulos, V., & Zulli, A. (2020). The Anti-Inflammatory Effect of Taurine on Cardiovascular Disease. Nutrients12(9), 2847. https://doi.org/10.3390/nu12092847

Hansen, S. H., Andersen, M. L., Cornett, C., Gradinaru, R., & Grunnet, N. (2010). A role for taurine in mitochondrial function. Journal of biomedical science17 Suppl 1(Suppl 1), S23. https://doi.org/10.1186/1423-0127-17-S1-S23

Milei J, Ferreira R, Llesuy S, Forcada P, Covarrubias J, Boveris A. Reduction of reperfusion injury with preoperative rapid intravenous infusion of taurine during myocardial revascularization. Am Heart J. 1992 Feb;123(2):339-45. doi: 10.1016/0002-8703(92)90644-b. PMID: 1736568.

Lak S, Ostadrahimi A, Nagili B, Asghari-Jafarabadi M, Beigzali S, Salehi F, Djafarzadeh R. Anti-Inflammatory Effect of Taurine in Burned Patients. Adv Pharm Bull. 2015 Nov;5(4):531-6. doi: 10.15171/apb.2015.072. Epub 2015 Nov 30. PMID: 26819926; PMCID: PMC4729355.

Maleki V, Mahdavi R, Hajizadeh-Sharafabad F, Alizadeh M. The effects of taurine supplementation on oxidative stress indices and inflammation biomarkers in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Diabetol Metab Syndr. 2020 Jan 29;12:9. doi: 10.1186/s13098-020-0518-7. PMID: 32015761; PMCID: PMC6990511.

Thirupathi A, Pinho RA, Baker JS, István B, Gu Y. Taurine Reverses Oxidative Damages and Restores the Muscle Function in Overuse of Exercised Muscle. Front Physiol. 2020 Oct 26;11:582449. doi: 10.3389/fphys.2020.582449. PMID: 33192592; PMCID: PMC7649292.

Menzie, J., Prentice, H., & Wu, J. Y. (2013). Neuroprotective Mechanisms of Taurine against Ischemic Stroke. Brain sciences3(2), 877–907. https://doi.org/10.3390/brainsci3020877

https://examine.com/supplements/taurine/

Как поддержать митохондрии? (по материалам книги Ли Ноу “Эгоистичная митохондрия”)

Вторая половина книги про “Митохондрии и будущее медицины” тоже не разочаровала, а даже, скорее, наоборот ? 

Я нашла в ней несколько ответов на свои разные “почему” (от “почему митохондрии наследуются по материнской линии” (…а это значит, что кто бы я там ни была по паспорту, митохондрии у меня цыганские :)) до “почему после смерти происходит окоченение трупа” и “почему трудно поставить диагноз при врожденной митохондриальной дисфункции”). 

Дальше про “что делать”. Особенно актуально в связи с тем, что нынешний вирус атакует именно митохондрии; и по-хорошему, для восстановления после ковида очень важно обеспечить условия для того, чтобы организм “разобрал” пострадавшие митохондрии и наделал новых хороших. 

А именно:

– помнить, что “бог не создал все калории равными” ? поэтому важно, чтобы рацион отличался высокой пищевой насыщенностью (как можно больше нутриентов на одну калорию, при чем самих калорий лучше набирать немного ниже дневной нормы (но не доводя себя до нервной анорексии). А это значит — нет простым углеводам, очень много некрахмалистых овощей, клетчатки, доступный белок и достаточно большое количество жирных кислот. В общем, раздолье для любителей супов, салатов и зеленых смузи.

– чередование “изобилия питательных веществ” с “временем для аутофагии” (т.е., например, сокращение длительности “пищевого окна”, разгрузочные дни)

– закаливание (периодическое попадание в низкотемпературную среду) — выходить на пару минут на балкон; проветривать помещение; спать в прохладном помещении; ходить босиком; обливаться холодной водой

– терапевтический массаж (тут надо с врачом консультироваться, если болели в тяжелой форме)

– движение, в меру возможности. 

Что пишет доктор Ноу про то, чем кормить митохондрии (тут ничего особенно нового, но про биологические механизмы замечательно):

– коэнзим Q10 (профилактически всем, кому под 40 и старше, дозу подбирать индивидуально)

– L-карнитин (чтобы перетаскивать жирные кислоты через мембрану митохондрий)

– магний

– альфа-липоевая кислота (после еды и вместе с витаминами В — это не д-р Ноу пишет, это я подтянула из Бредесена и Брекмана, но это не однозначно; – ДК)

– D-рибоза

– креатин

– среднецепочечные жирные кислоты (ну или хотя бы кокосовое масло)

ну и вот оказалось замечательно, что некоторой поддерживающей терапией еще можно себя и побаловать ?

– пиррохинолинхинон (витамин В14 – содержится в какао-порошке и темном шоколаде)

– ресвератрол и птеростильбен (работают как синергисты; птеростильбен содержится в чернике, черном винограде; ресвератрол в арахисе и черном винограде)